The Proportional-Integral-Derivative (PID) controller operates the majority of modern control systems and has applications in many industries; thus any improvement in its design methodology has the potential to have a significant engineering and economic impact. Despite the existence of numerous methods for setting the parameters of PID controllers, the stability analysis of time-delay systems that use PID controllers remains extremely difficult, and there are very few existing results on PID controller synthesis.
Filling a gap in the literature, this book is a presentation of recent results in the field of PID controllers, including their design, analysis, and synthesis. The focus is on linear time-invariant plants, which may contain a time-delay in the feedback loop---a setting that captures many real-world practical and industrial situations. Emphasis is placed on the efficient computation of the entire set of PID controllers achieving stability and various performance specifications---both classical (gain and phase margin) and modern (H-infinity norms of closed-loop transfer functions)---enabling realistic design with several different criteria. Efficiency is important for the development of future software design packages, as well as further capabilities such as adaptive PID design and online implementation.
Additional topics and features include:
* generalization and use of results-due to Pontryagin and others-to analyze time-delay systems
* treatment of robust and nonfragile designs that tolerate perturbations
* examination of optimum design, allowing practitioners to find optimal PID controllers with respect to an index
* study and comparison of tuning techniques with respect to their resilience to controller parameter perturbation
* a final chapter summarizing the main results and their corresponding proposed algorithms
The results presented here are timely given the resurgence ofinterest in PID controllers and will find widespread application, specifically in the development of computationally efficient tools for PID controller design and analysis. Serving as a catalyst to bridge the theory--practice gap in the control field as well as the classical--modern gap, this monograph is an excellent resource for control, electrical, chemical, and mechanical engineers, as well as researchers in the field of PID controllers.
Filling a gap in the literature, this book is a presentation of recent results in the field of PID controllers, including their design, analysis, and synthesis. The focus is on linear time-invariant plants, which may contain a time-delay in the feedback loop---a setting that captures many real-world practical and industrial situations. Emphasis is placed on the efficient computation of the entire set of PID controllers achieving stability and various performance specifications---both classical (gain and phase margin) and modern (H-infinity norms of closed-loop transfer functions)---enabling realistic design with several different criteria. Efficiency is important for the development of future software design packages, as well as further capabilities such as adaptive PID design and online implementation.
Additional topics and features include:
* generalization and use of results-due to Pontryagin and others-to analyze time-delay systems
* treatment of robust and nonfragile designs that tolerate perturbations
* examination of optimum design, allowing practitioners to find optimal PID controllers with respect to an index
* study and comparison of tuning techniques with respect to their resilience to controller parameter perturbation
* a final chapter summarizing the main results and their corresponding proposed algorithms
The results presented here are timely given the resurgence ofinterest in PID controllers and will find widespread application, specifically in the development of computationally efficient tools for PID controller design and analysis. Serving as a catalyst to bridge the theory--practice gap in the control field as well as the classical--modern gap, this monograph is an excellent resource for control, electrical, chemical, and mechanical engineers, as well as researchers in the field of PID controllers.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"Those who have followed the area closely will notice that the authors of PID Controllers for Time-Delay Systems have taken a path quite different from other researchers. In particular, the authors have concentrated on characterizing the complete set of PID controls that stabilize a system. This approach gives the old topic a rather modern flavor. The significance of this line of research is obvious....
This book is a systematic presentation of many important aspects of the authors' work on PID control with emphasis on time-delay systems. The book describes the set of PID controllers that stabilize the system and explains how to use this set to design PID controllers that achieve robustness, nonfragility, and improved performance....
The book is of interest to practicing engineers, graduate students, and researchers working in the systems and control area. The authors do an excellent job presenting the materials systematically, striking a balance between mathematical rigor and accessibility to average readers. The book contains numerous diagrams and many illustrative examples to enhance its readability...[and] is very well written and can be used for self-study and as a reference." -IEEE Control Systems Magazine
"This monograph presents some recent results on the proportional-integral-derivative (PID) controller and its design, analysis and synthesis.... It seems that these results are timely and in line with the resurgence of interest in the PID controller and the general rekindling of interest in fixed- and low-order controller design. As is known, there are hardly any results in modern and postmodern control theory in this regard, while such controllers are the ones of choice in applications.... It is hoped that the monograph will act as a catalyst to bridge the gap between theory and practice and also the gap between classical and modern control theory." -Mathematical Reviews
This book is a systematic presentation of many important aspects of the authors' work on PID control with emphasis on time-delay systems. The book describes the set of PID controllers that stabilize the system and explains how to use this set to design PID controllers that achieve robustness, nonfragility, and improved performance....
The book is of interest to practicing engineers, graduate students, and researchers working in the systems and control area. The authors do an excellent job presenting the materials systematically, striking a balance between mathematical rigor and accessibility to average readers. The book contains numerous diagrams and many illustrative examples to enhance its readability...[and] is very well written and can be used for self-study and as a reference." -IEEE Control Systems Magazine
"This monograph presents some recent results on the proportional-integral-derivative (PID) controller and its design, analysis and synthesis.... It seems that these results are timely and in line with the resurgence of interest in the PID controller and the general rekindling of interest in fixed- and low-order controller design. As is known, there are hardly any results in modern and postmodern control theory in this regard, while such controllers are the ones of choice in applications.... It is hoped that the monograph will act as a catalyst to bridge the gap between theory and practice and also the gap between classical and modern control theory." -Mathematical Reviews