78,95 €
78,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
39 °P sammeln
78,95 €
78,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
39 °P sammeln
Als Download kaufen
78,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
39 °P sammeln
Jetzt verschenken
78,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
39 °P sammeln
  • Format: ePub

Pinch Analysis for Energy and Carbon Footprint Reduction is the only dedicated pinch analysis and process integration guide, covering a breadth of material from foundational knowledge to in-depth processes. Readers are introduced to the main concepts of pinch analysis, the calculation of energy targets for a given process, the pinch temperature, and the golden rules of pinch-based design to meet energy targets. More advanced topics include the extraction of stream data necessary for a pinch analysis, the design of heat exchanger networks, hot and cold utility systems, combined heat and power…mehr

Produktbeschreibung
Pinch Analysis for Energy and Carbon Footprint Reduction is the only dedicated pinch analysis and process integration guide, covering a breadth of material from foundational knowledge to in-depth processes. Readers are introduced to the main concepts of pinch analysis, the calculation of energy targets for a given process, the pinch temperature, and the golden rules of pinch-based design to meet energy targets. More advanced topics include the extraction of stream data necessary for a pinch analysis, the design of heat exchanger networks, hot and cold utility systems, combined heat and power (CHP), refrigeration, batch- and time-dependent situations, and optimization of system operating conditions, including distillation, evaporation, and solids drying.

This new edition offers tips and techniques for practical applications, supported by several detailed case studies. Examples stem from a wide range of industries, including buildings and other non-process situations. This reference is a must-have guide for chemical process engineers, food and biochemical engineers, plant engineers, and professionals concerned with energy optimization, including building designers.

  • Covers practical analysis of both new and existing processes
  • Teaches readers to extract the stream data necessary for a pinch analysis and describes the targeting process in depth; includes a downloadable spreadsheet to calculate energy targets
  • Demonstrates how to achieve the targets by heat recovery, utility system design, and process change
  • Updated to include carbon footprint, water and hydrogen pinch, developments in industrial applications and software, site data reconciliation, additional case studies, and answers to selected exercises

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ian Kemp has over 30 years of experience in pinch analysis and process energy reduction, including consultancy, R&D, and technical writing. He was a principal technologist at AEA Technology, Harwell, and a scientific leader at GSK. He received the IChemE Junior Moulton Medal in 1989 for his paper on Batch Process Integration and the IChemE Brennan Medal in 2007 for the second edition of this book. His specialties include solids processing, particularly of pharmaceuticals, and drying processes, including spray drying, fluid bed drying and granulation, and dryer selection and troubleshooting, as well as energy reduction, sustainability, and pinch analysis.Dr. Jeng Shiun Lim is a researcher in Process Systems Engineering Center (PROSPECT) and Research Institute of Sustainable Environment (RISE). His specialties include energy management and energy planning for greenhouse gas emissions reduction and resource conservation and planning via systematic techniques (pinch analysis, mathematical modelling, and optimization). He has published 45 ISI and 37 Scopus indexed articles to date. He has been extensively involved in research projects and industrial-based projects to assist those companies identifying energy saving opportunities worth millions of dollars through the use of process integration and process systems engineering approach.