Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents, in a variational form, very many two dimensional models which have been developed to overcome some weaknesses of the Kirchhoff-Love and Reissner-Mindlin's models. More precisely the N-T and N models are particularly treated because they clearly show the impact of the change in the third fundamental form whose contribution to the strain energy becomes important when the characteristic ratio of the shell is roughly greater than 0.3. Transverse stresses through-the-thickness are calculated. Gradient Recovery and Strain deformation approach with Curve triangular and Shifted…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 8.8MB
- IUTAM Symposium on Relations of Shell, Plate, Beam and 3D Models (eBook, PDF)73,95 €
- E. S. MistakidisNonconvex Optimization in Mechanics (eBook, PDF)161,95 €
- J. R. BarberElasticity (eBook, PDF)81,95 €
- K. K. ChoiStructural Sensitivity Analysis and Optimization 2 (eBook, PDF)113,95 €
- Maria RadwanskaPlate and Shell Structures (eBook, PDF)103,99 €
- J. R. BarberElasticity (eBook, PDF)97,95 €
- Xuansheng ChengThermal Elastic Mechanics Problems of Concrete Rectangular Thin Plate (eBook, PDF)73,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 293
- Erscheinungstermin: 2. September 2024
- Englisch
- ISBN-13: 9789819727803
- Artikelnr.: 72243719
- Verlag: Springer Nature Singapore
- Seitenzahl: 293
- Erscheinungstermin: 2. September 2024
- Englisch
- ISBN-13: 9789819727803
- Artikelnr.: 72243719
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
List of Figures
List of Tables
Acknowledgements
1 CURVILINEAR MEDIA
1.1 GEOMETRY OF A 3D CURVILINEAR MEDIA
1.2 SURFACE GEOMETRY
2 EQUILIBRIUM EQUATIONS
2.1 GEOMETRY OF A SHELL
2.2 EULER'S EQUATIONS AND VARIATIONAL FORMULATION
3 DYNAMIC EVOLUTION OF SHELLS
3.1 DYNAMIC EQUILIBRIUM EQUATION OF THE N-T MODEL . . . . . .
3.2 FREE VIBRATIONS
3.3 THE MODEL "N" OF THICK SHELLS. . . . . . . . . . . . . . . . .
4 THIN SHELLS
4.1 THEORY OF THIN SHELLS
4.2 THE MEMBRANE THEORY OF THIN SHELLS. . . . . . . . . . .
.4.3 THE MIXED THEORY (MEMBRANE-BENDING) OF THIN SHELLS
4.4 THEORY OF PLATES
4.5 THEORY OF ORTHOTROPIC PLATES
5 NUMERICAL METHODS
5.1 GENERALITIES OF THE 2D FEM. . . . . . . . . . . . . . . . . . .
5.2 C0 FINITE ELEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 CURVED TRIANGULAR ELEMENTS AND ASSUMED STRAIN APPROACH
FOR SHELLS. . . . . . . . . . . . . . . . . . . . . . . .
5.4 APPLICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 OTHER MODELS
6.1 STIFFENED,THERMOELASTIC AND HOMOGENEOUS ANISOTROPIC SHELLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 HETEROGENEOUS SHELLS. . . . . . . . . . . . . . . . . . . . .
6.3 SOME SEMI-ANALYTIC MODELS. . . . . . . . . . . . . . . . . .
6.4 COSSERAT THICK SHELLS. . . . . . . . . . . . . . . . . . . . . .
Bibliography
List of Figures
List of Tables
Acknowledgements
1 CURVILINEAR MEDIA
1.1 GEOMETRY OF A 3D CURVILINEAR MEDIA
1.2 SURFACE GEOMETRY
2 EQUILIBRIUM EQUATIONS
2.1 GEOMETRY OF A SHELL
2.2 EULER'S EQUATIONS AND VARIATIONAL FORMULATION
3 DYNAMIC EVOLUTION OF SHELLS
3.1 DYNAMIC EQUILIBRIUM EQUATION OF THE N-T MODEL . . . . . .
3.2 FREE VIBRATIONS
3.3 THE MODEL "N" OF THICK SHELLS. . . . . . . . . . . . . . . . .
4 THIN SHELLS
4.1 THEORY OF THIN SHELLS
4.2 THE MEMBRANE THEORY OF THIN SHELLS. . . . . . . . . . .
.4.3 THE MIXED THEORY (MEMBRANE-BENDING) OF THIN SHELLS
4.4 THEORY OF PLATES
4.5 THEORY OF ORTHOTROPIC PLATES
5 NUMERICAL METHODS
5.1 GENERALITIES OF THE 2D FEM. . . . . . . . . . . . . . . . . . .
5.2 C0 FINITE ELEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 CURVED TRIANGULAR ELEMENTS AND ASSUMED STRAIN APPROACH
FOR SHELLS. . . . . . . . . . . . . . . . . . . . . . . .
5.4 APPLICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 OTHER MODELS
6.1 STIFFENED,THERMOELASTIC AND HOMOGENEOUS ANISOTROPIC SHELLS. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 HETEROGENEOUS SHELLS. . . . . . . . . . . . . . . . . . . . .
6.3 SOME SEMI-ANALYTIC MODELS. . . . . . . . . . . . . . . . . .
6.4 COSSERAT THICK SHELLS. . . . . . . . . . . . . . . . . . . . . .
Bibliography
List of Figures
List of Tables
Acknowledgements
1 CURVILINEAR MEDIA
1.1 GEOMETRY OF A 3D CURVILINEAR MEDIA
1.2 SURFACE GEOMETRY
2 EQUILIBRIUM EQUATIONS
2.1 GEOMETRY OF A SHELL
2.2 EULER'S EQUATIONS AND VARIATIONAL FORMULATION
3 DYNAMIC EVOLUTION OF SHELLS
3.1 DYNAMIC EQUILIBRIUM EQUATION OF THE N-T MODEL . . . . . .
3.2 FREE VIBRATIONS
3.3 THE MODEL "N" OF THICK SHELLS. . . . . . . . . . . . . . . . .
4 THIN SHELLS
4.1 THEORY OF THIN SHELLS
4.2 THE MEMBRANE THEORY OF THIN SHELLS. . . . . . . . . . .
.4.3 THE MIXED THEORY (MEMBRANE-BENDING) OF THIN SHELLS
4.4 THEORY OF PLATES
4.5 THEORY OF ORTHOTROPIC PLATES
5 NUMERICAL METHODS
5.1 GENERALITIES OF THE 2D FEM. . . . . . . . . . . . . . . . . . .
5.2 C0 FINITE ELEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 CURVED TRIANGULAR ELEMENTS AND ASSUMED STRAIN APPROACH
FOR SHELLS. . . . . . . . . . . . . . . . . . . . . . . .
5.4 APPLICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 OTHER MODELS
6.1 STIFFENED,THERMOELASTIC AND HOMOGENEOUS ANISOTROPIC SHELLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 HETEROGENEOUS SHELLS. . . . . . . . . . . . . . . . . . . . .
6.3 SOME SEMI-ANALYTIC MODELS. . . . . . . . . . . . . . . . . .
6.4 COSSERAT THICK SHELLS. . . . . . . . . . . . . . . . . . . . . .
Bibliography
List of Figures
List of Tables
Acknowledgements
1 CURVILINEAR MEDIA
1.1 GEOMETRY OF A 3D CURVILINEAR MEDIA
1.2 SURFACE GEOMETRY
2 EQUILIBRIUM EQUATIONS
2.1 GEOMETRY OF A SHELL
2.2 EULER'S EQUATIONS AND VARIATIONAL FORMULATION
3 DYNAMIC EVOLUTION OF SHELLS
3.1 DYNAMIC EQUILIBRIUM EQUATION OF THE N-T MODEL . . . . . .
3.2 FREE VIBRATIONS
3.3 THE MODEL "N" OF THICK SHELLS. . . . . . . . . . . . . . . . .
4 THIN SHELLS
4.1 THEORY OF THIN SHELLS
4.2 THE MEMBRANE THEORY OF THIN SHELLS. . . . . . . . . . .
.4.3 THE MIXED THEORY (MEMBRANE-BENDING) OF THIN SHELLS
4.4 THEORY OF PLATES
4.5 THEORY OF ORTHOTROPIC PLATES
5 NUMERICAL METHODS
5.1 GENERALITIES OF THE 2D FEM. . . . . . . . . . . . . . . . . . .
5.2 C0 FINITE ELEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 CURVED TRIANGULAR ELEMENTS AND ASSUMED STRAIN APPROACH
FOR SHELLS. . . . . . . . . . . . . . . . . . . . . . . .
5.4 APPLICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 OTHER MODELS
6.1 STIFFENED,THERMOELASTIC AND HOMOGENEOUS ANISOTROPIC SHELLS. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 HETEROGENEOUS SHELLS. . . . . . . . . . . . . . . . . . . . .
6.3 SOME SEMI-ANALYTIC MODELS. . . . . . . . . . . . . . . . . .
6.4 COSSERAT THICK SHELLS. . . . . . . . . . . . . . . . . . . . . .
Bibliography