42,95 €
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
42,95 €
Als Download kaufen
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This volume focuses on methods applied to autosomal dominant polycystic kidney disease (ADPKD), a common human genetic disease. ADPKD is caused by abnormal cilia formation or function. This proposed book will cover the state-of-the-art methods ranging from molecular biology, biochemistry, electrophysiology, to tools in model animal studies.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.41MB
Andere Kunden interessierten sich auch für
- Jinghua HuPolycystic Kidney Disease (eBook, PDF)42,95 €
- Lipid Oxidation in Health and Disease (eBook, ePUB)48,95 €
- A. M. SchreiberGeneral and Comparative Endocrinology (eBook, ePUB)115,95 €
- Cyclic Nucleotide Signaling (eBook, ePUB)48,95 €
- New Techniques for Studying Biomembranes (eBook, ePUB)42,95 €
- Chronic Inflammation (eBook, ePUB)56,95 €
- Liver Metabolism and Fatty Liver Disease (eBook, ePUB)48,95 €
-
-
-
This volume focuses on methods applied to autosomal dominant polycystic kidney disease (ADPKD), a common human genetic disease. ADPKD is caused by abnormal cilia formation or function. This proposed book will cover the state-of-the-art methods ranging from molecular biology, biochemistry, electrophysiology, to tools in model animal studies.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 360
- Erscheinungstermin: 24. Oktober 2019
- Englisch
- ISBN-13: 9780429888946
- Artikelnr.: 57981690
- Verlag: Taylor & Francis
- Seitenzahl: 360
- Erscheinungstermin: 24. Oktober 2019
- Englisch
- ISBN-13: 9780429888946
- Artikelnr.: 57981690
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jinghua Hu is an Associate Professor in Biochemistry and Molecular Biology at the Mayo Clinic in Rochester, Minnesota. He uses various model systems to study the correlation between cilia dysfunction and cilia-related diseases (collectively known as ciliopathies). The long-term goals of Dr. Hu's laboratory are to understand how cilia form and function; determine the pathogenesis underlying ciliopathies; and design therapies to prevent, delay or halt disease progression. The major experimental approaches used in Dr. Hu's laboratory include molecular genetics, biochemistry, real-time imaging and model organisms. Dr. Hu's research has been funded by the National Institutes of Health and PKD Foundation, among other organizations.
Yong Yu is an Associate Professor and Graduate Director for Biological Sciences, Molecular and Cellular Physiology and Neurobiology at St John's University. The research in Yu lab is focusing on the molecular mechanisms of assembly, function and regulation of ion channels and membrane receptors. Currently they are interested in the transient receptor potential (TRP) channels, proteins which are essential for sensory physiology and have been shown to play crucial roles in human diseases. So far, TRP channels has been shown to be involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. They use cultured mammalian cells, Xenopus oocytes and zebrafish as model systems, and study structure and function of ion channels and receptors with a combined molecular biology, biochemistry, biophysics, x-ray crystallography, and electrophysiology approach. Research in Yu lab is funded by the National Institutes of Health.
1. Biochemical Analysis of the Polycystin-1 Complexity Generated by
Proteolytic Cleavage at the G Protein-Coupled Receptor Proteolysis Site. 2.
Structural Determination of the Polycystin-2 Channel by Electron
Cryo-Microscopy. 3. Recording Ion Channels in Cilia Membranes. 4.
Electrophysiological Recording of a Gain-of-Function Polycystin-2 Channel
with a Two-Electrode Voltage Clamp. 5. Functional Studies of PKD2 and
PKD2L1 through Opening the Hydrophobic Activation Gate. 6. Analyzing the
GPCR Function of Polycystin-1. 7. Methods to Study the Vasculature in
ADPKD. 8. Energy Metabolism, Metabolic Sensors, and Nutritional
Interventions in Polycystic Kidney Disease. 9. "Kidney in a Dish" Organoids
for PKD. 10. Rodent Autosomal Dominant Polycystic Kidney Disease Models.
11. Using C. elegans as a Model in PKD. 12. Approaches to Studying
Polycystic Kidney Disease in Zebrafish. 13. Investigation of DNA
Methylation in Autosomal Dominant Polycystic Kidney Disease. 14. Molecular
Diagnosis of Autosomal Dominant Polycystic Kidney Disease.
Proteolytic Cleavage at the G Protein-Coupled Receptor Proteolysis Site. 2.
Structural Determination of the Polycystin-2 Channel by Electron
Cryo-Microscopy. 3. Recording Ion Channels in Cilia Membranes. 4.
Electrophysiological Recording of a Gain-of-Function Polycystin-2 Channel
with a Two-Electrode Voltage Clamp. 5. Functional Studies of PKD2 and
PKD2L1 through Opening the Hydrophobic Activation Gate. 6. Analyzing the
GPCR Function of Polycystin-1. 7. Methods to Study the Vasculature in
ADPKD. 8. Energy Metabolism, Metabolic Sensors, and Nutritional
Interventions in Polycystic Kidney Disease. 9. "Kidney in a Dish" Organoids
for PKD. 10. Rodent Autosomal Dominant Polycystic Kidney Disease Models.
11. Using C. elegans as a Model in PKD. 12. Approaches to Studying
Polycystic Kidney Disease in Zebrafish. 13. Investigation of DNA
Methylation in Autosomal Dominant Polycystic Kidney Disease. 14. Molecular
Diagnosis of Autosomal Dominant Polycystic Kidney Disease.
1. Biochemical Analysis of the Polycystin-1 Complexity Generated by
Proteolytic Cleavage at the G Protein-Coupled Receptor Proteolysis Site. 2.
Structural Determination of the Polycystin-2 Channel by Electron
Cryo-Microscopy. 3. Recording Ion Channels in Cilia Membranes. 4.
Electrophysiological Recording of a Gain-of-Function Polycystin-2 Channel
with a Two-Electrode Voltage Clamp. 5. Functional Studies of PKD2 and
PKD2L1 through Opening the Hydrophobic Activation Gate. 6. Analyzing the
GPCR Function of Polycystin-1. 7. Methods to Study the Vasculature in
ADPKD. 8. Energy Metabolism, Metabolic Sensors, and Nutritional
Interventions in Polycystic Kidney Disease. 9. "Kidney in a Dish" Organoids
for PKD. 10. Rodent Autosomal Dominant Polycystic Kidney Disease Models.
11. Using C. elegans as a Model in PKD. 12. Approaches to Studying
Polycystic Kidney Disease in Zebrafish. 13. Investigation of DNA
Methylation in Autosomal Dominant Polycystic Kidney Disease. 14. Molecular
Diagnosis of Autosomal Dominant Polycystic Kidney Disease.
Proteolytic Cleavage at the G Protein-Coupled Receptor Proteolysis Site. 2.
Structural Determination of the Polycystin-2 Channel by Electron
Cryo-Microscopy. 3. Recording Ion Channels in Cilia Membranes. 4.
Electrophysiological Recording of a Gain-of-Function Polycystin-2 Channel
with a Two-Electrode Voltage Clamp. 5. Functional Studies of PKD2 and
PKD2L1 through Opening the Hydrophobic Activation Gate. 6. Analyzing the
GPCR Function of Polycystin-1. 7. Methods to Study the Vasculature in
ADPKD. 8. Energy Metabolism, Metabolic Sensors, and Nutritional
Interventions in Polycystic Kidney Disease. 9. "Kidney in a Dish" Organoids
for PKD. 10. Rodent Autosomal Dominant Polycystic Kidney Disease Models.
11. Using C. elegans as a Model in PKD. 12. Approaches to Studying
Polycystic Kidney Disease in Zebrafish. 13. Investigation of DNA
Methylation in Autosomal Dominant Polycystic Kidney Disease. 14. Molecular
Diagnosis of Autosomal Dominant Polycystic Kidney Disease.