Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis (eBook, PDF)
Redaktion: Itsuno, Shinichi
145,99 €
145,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
145,99 €
Als Download kaufen
145,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
145,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis (eBook, PDF)
Redaktion: Itsuno, Shinichi
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book reviews chiral polymer synthesis and its application to asymmetric catalysis. It features the design and use of polymer-immobilized catalysts and methods for their design and synthesis. Chapters cover peptide-catalyzed and enantioselective synthesis, optically-active polymers, and continuous flow processes. It collects recent advances in an important field of polymer and organic chemistry, with leading researchers explaining applications in academic and industry R & D.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 20.68MB
Andere Kunden interessierten sich auch für
- Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis (eBook, ePUB)145,99 €
- Nikos HadjichristidisBlock Copolymers (eBook, PDF)217,99 €
- Polymer Brushes (eBook, PDF)349,99 €
- Rubber-Clay Nanocomposites (eBook, PDF)145,99 €
- Handbook of Ring-Opening Polymerization (eBook, PDF)183,99 €
- Complex Macromolecular Architectures (eBook, PDF)279,99 €
- Alessandro GandiniFuran Polymers and their Reactions (eBook, PDF)118,99 €
-
-
-
This book reviews chiral polymer synthesis and its application to asymmetric catalysis. It features the design and use of polymer-immobilized catalysts and methods for their design and synthesis. Chapters cover peptide-catalyzed and enantioselective synthesis, optically-active polymers, and continuous flow processes. It collects recent advances in an important field of polymer and organic chemistry, with leading researchers explaining applications in academic and industry R & D.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 522
- Erscheinungstermin: 28. Juni 2011
- Englisch
- ISBN-13: 9781118063941
- Artikelnr.: 37340732
- Verlag: Wiley
- Seitenzahl: 522
- Erscheinungstermin: 28. Juni 2011
- Englisch
- ISBN-13: 9781118063941
- Artikelnr.: 37340732
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Shinichi Itsuno, PhD, is a Professor at Toyohashi University of Technology. His research focuses on the interface between organic chemistry and polymer chemistry, and is especially concerned with asymmetric synthesis, reactive polymers, and new polymer synthesis. Dr. Itsuno has written over a hundred papers, as well as thirty book chapters.
PREFACE xiii
FOREWORD xvii
CONTRIBUTORS xix
1 An Overview of Polymer-Immobilized Chiral Catalysts and Synthetic Chiral
Polymers 1
Shinichi Itsuno
1.1 Introduction / 1
1.2 Polymeric Chiral Catalyst / 2
1.3 Synthesis of Optically Active Polymers / 8
2 Polymer-Immobilized Chiral Organocatalyst 17
Naoki Haraguchi and Shinichi Itsuno
2.1 Introduction / 17
2.2 Synthesis of Polymer-immobilized Chiral Organocatalyst / 18
2.3 Polymer-immobilized Cinchona Alkaloids / 22
2.4 Other Polymer-immobilized Chiral Basic Organocatalysts / 27
2.5 Polymer-immobilized Cinchona Alkaloid Quaternary Ammonium Salts / 28
2.6 Polymer-immobilized MacMillan Catalysts / 35
2.7 Polymer-immobilized Pyrrolidine Derivatives / 42
2.8 Other Polymer-immobilized Chiral Quaternary Ammonium Salts / 46
2.9 Polymer-immobilized Proline Derivatives / 46
2.10 Polymer-immobilized Peptides and Poly(amino acid)s / 50
2.11 Polymer-immobilized Chiral Acidic Organocatalysts / 50
2.12 Helical Polymers as Chiral Organocatalysts / 51
2.13 Cascade Reactions Using Polymer-immobilized Chiral Organocatalysts /
52
2.14 Conclusions / 54
3 Asymmetric Synthesis Using Polymer-Immobilized Proline Derivatives 63
Michelangelo Gruttadauria, Francesco Giacalone, and Renato Noto
3.1 Introduction / 63
3.2 Polymer-supported Proline / 66
3.3 Polymer-supported Prolinamides / 73
3.4 Polymer-supported Proline-Peptides / 75
3.5 Polymer-supported Pyrrolidines / 78
3.6 Polymer-supported Prolinol and Diarylprolinol Derivatives / 80
3.7 Conclusions and Outlooks / 84
4 Peptide-Catalyzed Asymmetric Synthesis 91
Kazuaki Kudo and Kengo Akagawa
4.1 Introduction / 91
4.2 Poly(amino acid) Catalysts / 94
4.3 Tri- and Tetrapeptide Catalysts / 99
4.4 Longer Peptides with a Secondary Structure / 110
4.5 Others / 118
4.6 Conclusions and Outlooks / 119
5 Continuous Flow System using Polymer-Supported Chiral Catalysts 125
Santiago V. Luis and Eduardo Garc¿a-Verdugo
5.1 Introduction / 125
5.2 Asymmetric Polymer-supported, Metal-based Catalysts and Reagents / 132
5.3 Polymer-supported Asymmetric Organocatalysts / 147
5.4 Polymer-supported Biocatalysts / 151
5.5 Conclusions / 152
6 Chiral Synthesis on Polymer Support: A Combinatorial Approach 157
Deepak B. Salunke and Chung-Ming Sun
6.1 Introduction / 157
6.2 Chiral Synthesis of Complex Polyfunctional Molecules on Polymer Support
/ 160
6.3 Conclusions / 194
7 Synthesis and Application of Helical Polymers with Macromolecular
Helicity Memory 201
Hiroki Iida and Eiji Yashima
7.1 Introduction / 201
7.2 Macromolecular Helicity Memory / 203
7.3 Enantioselective Reaction Assisted by Helical Polymers with Helicity
Memory / 218
7.4 Conclusions / 219
8 Poly(isocyanide)s, Poly(quinoxaline-2,3-diyl)s, and Related Helical
Polymers Used as Chiral Polymer Catalysts in Asymmetric Synthesis 223
Yuuya Nagata and Michinori Suginome
8.1 Introduction / 223
8.2 Asymmetric Synthesis of Poly(isocyanide)s / 224
8.3 Asymmetric Synthesis of Poly(quinoxaline)s / 244
8.4 Enantioselective Catalysis using Helical Polymers / 255
8.5 Conclusions / 262
9 C2 Chiral Biaryl Unit-Based Helical Polymers and Their Application to
Asymmetric Catalysis 267
Takeshi Maeda and Toshikazu Takata
9.1 Introduction / 267
9.2 Synthesis of C2 Chiral Unit-based Helical Polymers / 269
9.3 Asymmetric Reactions Catalyzed by Helical Polymer Catalysts / 282
9.4 Conclusions / 289
10 Immobilization of Multicomponent Asymmetric Catalysts (MACs) 293
Hiroaki Sasai and Shinobu Takizawa
10.1 Introduction / 293
10.2 Dendrimer-Supported and Dendronized Polymer-supported MACs / 294
10.3 Nanoparticles as Supports for Chiral Catalysts [13] / 302
10.4 The Catalyst Analog Approach [24] / 311
10.5 Metal-bridged Polymers as Heterogeneous Catalysts: An Immobilization
Method for MACs Without Using Any Support [26] / 314
10.6 Conclusion / 318
11 Optically Active Polymer and Dendrimer Synthesis and Their Use in
Asymmetric Synthesis 323
Qiao-Sheng Hu and Lin Pu
11.1 Introduction / 323
11.2 Synthesis and Application of BINOL/BINAP-based Optically Active
Polymers / 324
11.3 Synthesis and Application of Optically Active Dendrimers / 355
11.4 Conclusions / 360
12 Asymmetric Polymerizations of N-Substituted Maleimides 365
Kenjiro Onimura and Tsutomu Oishi
12.1 Introduction / 365
12.2 Chirality of 1-Mono- or 1,1-Disubstituted and 1,2-Disubstituted
Olefins / 365
12.3 Asymmetric Polymerizations of Achiral N-Substituted Maleimides / 368
12.4 Anionic Polymerization Mechanism of RMI / 371
12.5 Asymmetric Polymerizations of Chiral N-Substituted Maleimides / 372
12.6 Structure and Absolute Stereochemistry of Poly(RMI) / 373
12.7 Asymmetric Radical Polymerizations ofN-Substituted Maleimides / 378
12.8 Chiral Discrimination Using Poly(RMI) / 378
12.9 Conclusions / 384
13 Synthesis of Hyperbranched Polymer Having Binaphthol Units via Oxidative
Cross-Coupling Polymerization 389
Shigeki Habaue
13.1 Introduction / 389
13.2 Oxidative Cross-coupling Reaction between 2-Naphthol and
3-Hydroxy-2-naphthoate / 391
13.3 Oxidative Cross-coupling Polymerization Affording Linear
Poly(binaphthol) / 392
13.4 Oxidative Cross-coupling Polymerization Leading to a Hyperbranched
Polymer / 396
13.5 Photoluminescence Properties of Hyperbranched Polymers / 400
13.6 Conclusions / 403
14 Optically Active Polyketones 407
Kyoko Nozaki
14.1 Introduction / 407
14.2 Asymmetric Synthesis of Isotactic Poly(propylene-alt-co) / 409
14.3 Asymmetric Synthesis of Isotactic Syndiotactic Poly(styrene-alt-co) /
411
14.4 Asymmetric Terpolymers Consisting of Two Kinds of Olefins and Carbon
Monoxide / 413
14.5 Asymmetric Polymerization of Other Olefins with CO / 414
14.6 Chemical Transformations of Optically Active Polyketones / 415
14.7 Conformational Studies on the Optically Active Polyketones / 416
14.8 Conclusions / 419
15 Synthesis and Function of Chiral p-Conjugated Polymers from
Phenylacetylenes 423
Toshiki Aoki, Takashi Kaneko, and Masahiro Teraguchi
15.1 Introduction / 423
15.2 Helix-sense-selective Polymerization (HSSP) of Substituted
Phenylacetylenes and Function of the Resulting One-handed Helical
Poly(phenylacetylene)s / 425
15.3 Chiral Desubstitution of Side Groups in Membrane State / 439
15.4 Synthesis of Chiral Polyradicals / 446
16 P-Stereogenic Oligomers, Polymers, and Related Cyclic Compounds 457
Yasuhiro Morisaki and Yoshiki Chujo
16.1 Introduction / 457
16.2 P-Stereogenic Oligomers Containing Chiral "P" Atoms in the Main Chain
/ 458
16.3 P-Stereogenic Polymers Containing Chiral "P" Atoms in the Main Chain /
470
16.4 Cyclic Phosphines Using P-Stereogenic Oligomers as Building Blocks /
475
16.5 Conclusions / 485
INDEX 489
FOREWORD xvii
CONTRIBUTORS xix
1 An Overview of Polymer-Immobilized Chiral Catalysts and Synthetic Chiral
Polymers 1
Shinichi Itsuno
1.1 Introduction / 1
1.2 Polymeric Chiral Catalyst / 2
1.3 Synthesis of Optically Active Polymers / 8
2 Polymer-Immobilized Chiral Organocatalyst 17
Naoki Haraguchi and Shinichi Itsuno
2.1 Introduction / 17
2.2 Synthesis of Polymer-immobilized Chiral Organocatalyst / 18
2.3 Polymer-immobilized Cinchona Alkaloids / 22
2.4 Other Polymer-immobilized Chiral Basic Organocatalysts / 27
2.5 Polymer-immobilized Cinchona Alkaloid Quaternary Ammonium Salts / 28
2.6 Polymer-immobilized MacMillan Catalysts / 35
2.7 Polymer-immobilized Pyrrolidine Derivatives / 42
2.8 Other Polymer-immobilized Chiral Quaternary Ammonium Salts / 46
2.9 Polymer-immobilized Proline Derivatives / 46
2.10 Polymer-immobilized Peptides and Poly(amino acid)s / 50
2.11 Polymer-immobilized Chiral Acidic Organocatalysts / 50
2.12 Helical Polymers as Chiral Organocatalysts / 51
2.13 Cascade Reactions Using Polymer-immobilized Chiral Organocatalysts /
52
2.14 Conclusions / 54
3 Asymmetric Synthesis Using Polymer-Immobilized Proline Derivatives 63
Michelangelo Gruttadauria, Francesco Giacalone, and Renato Noto
3.1 Introduction / 63
3.2 Polymer-supported Proline / 66
3.3 Polymer-supported Prolinamides / 73
3.4 Polymer-supported Proline-Peptides / 75
3.5 Polymer-supported Pyrrolidines / 78
3.6 Polymer-supported Prolinol and Diarylprolinol Derivatives / 80
3.7 Conclusions and Outlooks / 84
4 Peptide-Catalyzed Asymmetric Synthesis 91
Kazuaki Kudo and Kengo Akagawa
4.1 Introduction / 91
4.2 Poly(amino acid) Catalysts / 94
4.3 Tri- and Tetrapeptide Catalysts / 99
4.4 Longer Peptides with a Secondary Structure / 110
4.5 Others / 118
4.6 Conclusions and Outlooks / 119
5 Continuous Flow System using Polymer-Supported Chiral Catalysts 125
Santiago V. Luis and Eduardo Garc¿a-Verdugo
5.1 Introduction / 125
5.2 Asymmetric Polymer-supported, Metal-based Catalysts and Reagents / 132
5.3 Polymer-supported Asymmetric Organocatalysts / 147
5.4 Polymer-supported Biocatalysts / 151
5.5 Conclusions / 152
6 Chiral Synthesis on Polymer Support: A Combinatorial Approach 157
Deepak B. Salunke and Chung-Ming Sun
6.1 Introduction / 157
6.2 Chiral Synthesis of Complex Polyfunctional Molecules on Polymer Support
/ 160
6.3 Conclusions / 194
7 Synthesis and Application of Helical Polymers with Macromolecular
Helicity Memory 201
Hiroki Iida and Eiji Yashima
7.1 Introduction / 201
7.2 Macromolecular Helicity Memory / 203
7.3 Enantioselective Reaction Assisted by Helical Polymers with Helicity
Memory / 218
7.4 Conclusions / 219
8 Poly(isocyanide)s, Poly(quinoxaline-2,3-diyl)s, and Related Helical
Polymers Used as Chiral Polymer Catalysts in Asymmetric Synthesis 223
Yuuya Nagata and Michinori Suginome
8.1 Introduction / 223
8.2 Asymmetric Synthesis of Poly(isocyanide)s / 224
8.3 Asymmetric Synthesis of Poly(quinoxaline)s / 244
8.4 Enantioselective Catalysis using Helical Polymers / 255
8.5 Conclusions / 262
9 C2 Chiral Biaryl Unit-Based Helical Polymers and Their Application to
Asymmetric Catalysis 267
Takeshi Maeda and Toshikazu Takata
9.1 Introduction / 267
9.2 Synthesis of C2 Chiral Unit-based Helical Polymers / 269
9.3 Asymmetric Reactions Catalyzed by Helical Polymer Catalysts / 282
9.4 Conclusions / 289
10 Immobilization of Multicomponent Asymmetric Catalysts (MACs) 293
Hiroaki Sasai and Shinobu Takizawa
10.1 Introduction / 293
10.2 Dendrimer-Supported and Dendronized Polymer-supported MACs / 294
10.3 Nanoparticles as Supports for Chiral Catalysts [13] / 302
10.4 The Catalyst Analog Approach [24] / 311
10.5 Metal-bridged Polymers as Heterogeneous Catalysts: An Immobilization
Method for MACs Without Using Any Support [26] / 314
10.6 Conclusion / 318
11 Optically Active Polymer and Dendrimer Synthesis and Their Use in
Asymmetric Synthesis 323
Qiao-Sheng Hu and Lin Pu
11.1 Introduction / 323
11.2 Synthesis and Application of BINOL/BINAP-based Optically Active
Polymers / 324
11.3 Synthesis and Application of Optically Active Dendrimers / 355
11.4 Conclusions / 360
12 Asymmetric Polymerizations of N-Substituted Maleimides 365
Kenjiro Onimura and Tsutomu Oishi
12.1 Introduction / 365
12.2 Chirality of 1-Mono- or 1,1-Disubstituted and 1,2-Disubstituted
Olefins / 365
12.3 Asymmetric Polymerizations of Achiral N-Substituted Maleimides / 368
12.4 Anionic Polymerization Mechanism of RMI / 371
12.5 Asymmetric Polymerizations of Chiral N-Substituted Maleimides / 372
12.6 Structure and Absolute Stereochemistry of Poly(RMI) / 373
12.7 Asymmetric Radical Polymerizations ofN-Substituted Maleimides / 378
12.8 Chiral Discrimination Using Poly(RMI) / 378
12.9 Conclusions / 384
13 Synthesis of Hyperbranched Polymer Having Binaphthol Units via Oxidative
Cross-Coupling Polymerization 389
Shigeki Habaue
13.1 Introduction / 389
13.2 Oxidative Cross-coupling Reaction between 2-Naphthol and
3-Hydroxy-2-naphthoate / 391
13.3 Oxidative Cross-coupling Polymerization Affording Linear
Poly(binaphthol) / 392
13.4 Oxidative Cross-coupling Polymerization Leading to a Hyperbranched
Polymer / 396
13.5 Photoluminescence Properties of Hyperbranched Polymers / 400
13.6 Conclusions / 403
14 Optically Active Polyketones 407
Kyoko Nozaki
14.1 Introduction / 407
14.2 Asymmetric Synthesis of Isotactic Poly(propylene-alt-co) / 409
14.3 Asymmetric Synthesis of Isotactic Syndiotactic Poly(styrene-alt-co) /
411
14.4 Asymmetric Terpolymers Consisting of Two Kinds of Olefins and Carbon
Monoxide / 413
14.5 Asymmetric Polymerization of Other Olefins with CO / 414
14.6 Chemical Transformations of Optically Active Polyketones / 415
14.7 Conformational Studies on the Optically Active Polyketones / 416
14.8 Conclusions / 419
15 Synthesis and Function of Chiral p-Conjugated Polymers from
Phenylacetylenes 423
Toshiki Aoki, Takashi Kaneko, and Masahiro Teraguchi
15.1 Introduction / 423
15.2 Helix-sense-selective Polymerization (HSSP) of Substituted
Phenylacetylenes and Function of the Resulting One-handed Helical
Poly(phenylacetylene)s / 425
15.3 Chiral Desubstitution of Side Groups in Membrane State / 439
15.4 Synthesis of Chiral Polyradicals / 446
16 P-Stereogenic Oligomers, Polymers, and Related Cyclic Compounds 457
Yasuhiro Morisaki and Yoshiki Chujo
16.1 Introduction / 457
16.2 P-Stereogenic Oligomers Containing Chiral "P" Atoms in the Main Chain
/ 458
16.3 P-Stereogenic Polymers Containing Chiral "P" Atoms in the Main Chain /
470
16.4 Cyclic Phosphines Using P-Stereogenic Oligomers as Building Blocks /
475
16.5 Conclusions / 485
INDEX 489
PREFACE xiii
FOREWORD xvii
CONTRIBUTORS xix
1 An Overview of Polymer-Immobilized Chiral Catalysts and Synthetic Chiral
Polymers 1
Shinichi Itsuno
1.1 Introduction / 1
1.2 Polymeric Chiral Catalyst / 2
1.3 Synthesis of Optically Active Polymers / 8
2 Polymer-Immobilized Chiral Organocatalyst 17
Naoki Haraguchi and Shinichi Itsuno
2.1 Introduction / 17
2.2 Synthesis of Polymer-immobilized Chiral Organocatalyst / 18
2.3 Polymer-immobilized Cinchona Alkaloids / 22
2.4 Other Polymer-immobilized Chiral Basic Organocatalysts / 27
2.5 Polymer-immobilized Cinchona Alkaloid Quaternary Ammonium Salts / 28
2.6 Polymer-immobilized MacMillan Catalysts / 35
2.7 Polymer-immobilized Pyrrolidine Derivatives / 42
2.8 Other Polymer-immobilized Chiral Quaternary Ammonium Salts / 46
2.9 Polymer-immobilized Proline Derivatives / 46
2.10 Polymer-immobilized Peptides and Poly(amino acid)s / 50
2.11 Polymer-immobilized Chiral Acidic Organocatalysts / 50
2.12 Helical Polymers as Chiral Organocatalysts / 51
2.13 Cascade Reactions Using Polymer-immobilized Chiral Organocatalysts /
52
2.14 Conclusions / 54
3 Asymmetric Synthesis Using Polymer-Immobilized Proline Derivatives 63
Michelangelo Gruttadauria, Francesco Giacalone, and Renato Noto
3.1 Introduction / 63
3.2 Polymer-supported Proline / 66
3.3 Polymer-supported Prolinamides / 73
3.4 Polymer-supported Proline-Peptides / 75
3.5 Polymer-supported Pyrrolidines / 78
3.6 Polymer-supported Prolinol and Diarylprolinol Derivatives / 80
3.7 Conclusions and Outlooks / 84
4 Peptide-Catalyzed Asymmetric Synthesis 91
Kazuaki Kudo and Kengo Akagawa
4.1 Introduction / 91
4.2 Poly(amino acid) Catalysts / 94
4.3 Tri- and Tetrapeptide Catalysts / 99
4.4 Longer Peptides with a Secondary Structure / 110
4.5 Others / 118
4.6 Conclusions and Outlooks / 119
5 Continuous Flow System using Polymer-Supported Chiral Catalysts 125
Santiago V. Luis and Eduardo Garc¿a-Verdugo
5.1 Introduction / 125
5.2 Asymmetric Polymer-supported, Metal-based Catalysts and Reagents / 132
5.3 Polymer-supported Asymmetric Organocatalysts / 147
5.4 Polymer-supported Biocatalysts / 151
5.5 Conclusions / 152
6 Chiral Synthesis on Polymer Support: A Combinatorial Approach 157
Deepak B. Salunke and Chung-Ming Sun
6.1 Introduction / 157
6.2 Chiral Synthesis of Complex Polyfunctional Molecules on Polymer Support
/ 160
6.3 Conclusions / 194
7 Synthesis and Application of Helical Polymers with Macromolecular
Helicity Memory 201
Hiroki Iida and Eiji Yashima
7.1 Introduction / 201
7.2 Macromolecular Helicity Memory / 203
7.3 Enantioselective Reaction Assisted by Helical Polymers with Helicity
Memory / 218
7.4 Conclusions / 219
8 Poly(isocyanide)s, Poly(quinoxaline-2,3-diyl)s, and Related Helical
Polymers Used as Chiral Polymer Catalysts in Asymmetric Synthesis 223
Yuuya Nagata and Michinori Suginome
8.1 Introduction / 223
8.2 Asymmetric Synthesis of Poly(isocyanide)s / 224
8.3 Asymmetric Synthesis of Poly(quinoxaline)s / 244
8.4 Enantioselective Catalysis using Helical Polymers / 255
8.5 Conclusions / 262
9 C2 Chiral Biaryl Unit-Based Helical Polymers and Their Application to
Asymmetric Catalysis 267
Takeshi Maeda and Toshikazu Takata
9.1 Introduction / 267
9.2 Synthesis of C2 Chiral Unit-based Helical Polymers / 269
9.3 Asymmetric Reactions Catalyzed by Helical Polymer Catalysts / 282
9.4 Conclusions / 289
10 Immobilization of Multicomponent Asymmetric Catalysts (MACs) 293
Hiroaki Sasai and Shinobu Takizawa
10.1 Introduction / 293
10.2 Dendrimer-Supported and Dendronized Polymer-supported MACs / 294
10.3 Nanoparticles as Supports for Chiral Catalysts [13] / 302
10.4 The Catalyst Analog Approach [24] / 311
10.5 Metal-bridged Polymers as Heterogeneous Catalysts: An Immobilization
Method for MACs Without Using Any Support [26] / 314
10.6 Conclusion / 318
11 Optically Active Polymer and Dendrimer Synthesis and Their Use in
Asymmetric Synthesis 323
Qiao-Sheng Hu and Lin Pu
11.1 Introduction / 323
11.2 Synthesis and Application of BINOL/BINAP-based Optically Active
Polymers / 324
11.3 Synthesis and Application of Optically Active Dendrimers / 355
11.4 Conclusions / 360
12 Asymmetric Polymerizations of N-Substituted Maleimides 365
Kenjiro Onimura and Tsutomu Oishi
12.1 Introduction / 365
12.2 Chirality of 1-Mono- or 1,1-Disubstituted and 1,2-Disubstituted
Olefins / 365
12.3 Asymmetric Polymerizations of Achiral N-Substituted Maleimides / 368
12.4 Anionic Polymerization Mechanism of RMI / 371
12.5 Asymmetric Polymerizations of Chiral N-Substituted Maleimides / 372
12.6 Structure and Absolute Stereochemistry of Poly(RMI) / 373
12.7 Asymmetric Radical Polymerizations ofN-Substituted Maleimides / 378
12.8 Chiral Discrimination Using Poly(RMI) / 378
12.9 Conclusions / 384
13 Synthesis of Hyperbranched Polymer Having Binaphthol Units via Oxidative
Cross-Coupling Polymerization 389
Shigeki Habaue
13.1 Introduction / 389
13.2 Oxidative Cross-coupling Reaction between 2-Naphthol and
3-Hydroxy-2-naphthoate / 391
13.3 Oxidative Cross-coupling Polymerization Affording Linear
Poly(binaphthol) / 392
13.4 Oxidative Cross-coupling Polymerization Leading to a Hyperbranched
Polymer / 396
13.5 Photoluminescence Properties of Hyperbranched Polymers / 400
13.6 Conclusions / 403
14 Optically Active Polyketones 407
Kyoko Nozaki
14.1 Introduction / 407
14.2 Asymmetric Synthesis of Isotactic Poly(propylene-alt-co) / 409
14.3 Asymmetric Synthesis of Isotactic Syndiotactic Poly(styrene-alt-co) /
411
14.4 Asymmetric Terpolymers Consisting of Two Kinds of Olefins and Carbon
Monoxide / 413
14.5 Asymmetric Polymerization of Other Olefins with CO / 414
14.6 Chemical Transformations of Optically Active Polyketones / 415
14.7 Conformational Studies on the Optically Active Polyketones / 416
14.8 Conclusions / 419
15 Synthesis and Function of Chiral p-Conjugated Polymers from
Phenylacetylenes 423
Toshiki Aoki, Takashi Kaneko, and Masahiro Teraguchi
15.1 Introduction / 423
15.2 Helix-sense-selective Polymerization (HSSP) of Substituted
Phenylacetylenes and Function of the Resulting One-handed Helical
Poly(phenylacetylene)s / 425
15.3 Chiral Desubstitution of Side Groups in Membrane State / 439
15.4 Synthesis of Chiral Polyradicals / 446
16 P-Stereogenic Oligomers, Polymers, and Related Cyclic Compounds 457
Yasuhiro Morisaki and Yoshiki Chujo
16.1 Introduction / 457
16.2 P-Stereogenic Oligomers Containing Chiral "P" Atoms in the Main Chain
/ 458
16.3 P-Stereogenic Polymers Containing Chiral "P" Atoms in the Main Chain /
470
16.4 Cyclic Phosphines Using P-Stereogenic Oligomers as Building Blocks /
475
16.5 Conclusions / 485
INDEX 489
FOREWORD xvii
CONTRIBUTORS xix
1 An Overview of Polymer-Immobilized Chiral Catalysts and Synthetic Chiral
Polymers 1
Shinichi Itsuno
1.1 Introduction / 1
1.2 Polymeric Chiral Catalyst / 2
1.3 Synthesis of Optically Active Polymers / 8
2 Polymer-Immobilized Chiral Organocatalyst 17
Naoki Haraguchi and Shinichi Itsuno
2.1 Introduction / 17
2.2 Synthesis of Polymer-immobilized Chiral Organocatalyst / 18
2.3 Polymer-immobilized Cinchona Alkaloids / 22
2.4 Other Polymer-immobilized Chiral Basic Organocatalysts / 27
2.5 Polymer-immobilized Cinchona Alkaloid Quaternary Ammonium Salts / 28
2.6 Polymer-immobilized MacMillan Catalysts / 35
2.7 Polymer-immobilized Pyrrolidine Derivatives / 42
2.8 Other Polymer-immobilized Chiral Quaternary Ammonium Salts / 46
2.9 Polymer-immobilized Proline Derivatives / 46
2.10 Polymer-immobilized Peptides and Poly(amino acid)s / 50
2.11 Polymer-immobilized Chiral Acidic Organocatalysts / 50
2.12 Helical Polymers as Chiral Organocatalysts / 51
2.13 Cascade Reactions Using Polymer-immobilized Chiral Organocatalysts /
52
2.14 Conclusions / 54
3 Asymmetric Synthesis Using Polymer-Immobilized Proline Derivatives 63
Michelangelo Gruttadauria, Francesco Giacalone, and Renato Noto
3.1 Introduction / 63
3.2 Polymer-supported Proline / 66
3.3 Polymer-supported Prolinamides / 73
3.4 Polymer-supported Proline-Peptides / 75
3.5 Polymer-supported Pyrrolidines / 78
3.6 Polymer-supported Prolinol and Diarylprolinol Derivatives / 80
3.7 Conclusions and Outlooks / 84
4 Peptide-Catalyzed Asymmetric Synthesis 91
Kazuaki Kudo and Kengo Akagawa
4.1 Introduction / 91
4.2 Poly(amino acid) Catalysts / 94
4.3 Tri- and Tetrapeptide Catalysts / 99
4.4 Longer Peptides with a Secondary Structure / 110
4.5 Others / 118
4.6 Conclusions and Outlooks / 119
5 Continuous Flow System using Polymer-Supported Chiral Catalysts 125
Santiago V. Luis and Eduardo Garc¿a-Verdugo
5.1 Introduction / 125
5.2 Asymmetric Polymer-supported, Metal-based Catalysts and Reagents / 132
5.3 Polymer-supported Asymmetric Organocatalysts / 147
5.4 Polymer-supported Biocatalysts / 151
5.5 Conclusions / 152
6 Chiral Synthesis on Polymer Support: A Combinatorial Approach 157
Deepak B. Salunke and Chung-Ming Sun
6.1 Introduction / 157
6.2 Chiral Synthesis of Complex Polyfunctional Molecules on Polymer Support
/ 160
6.3 Conclusions / 194
7 Synthesis and Application of Helical Polymers with Macromolecular
Helicity Memory 201
Hiroki Iida and Eiji Yashima
7.1 Introduction / 201
7.2 Macromolecular Helicity Memory / 203
7.3 Enantioselective Reaction Assisted by Helical Polymers with Helicity
Memory / 218
7.4 Conclusions / 219
8 Poly(isocyanide)s, Poly(quinoxaline-2,3-diyl)s, and Related Helical
Polymers Used as Chiral Polymer Catalysts in Asymmetric Synthesis 223
Yuuya Nagata and Michinori Suginome
8.1 Introduction / 223
8.2 Asymmetric Synthesis of Poly(isocyanide)s / 224
8.3 Asymmetric Synthesis of Poly(quinoxaline)s / 244
8.4 Enantioselective Catalysis using Helical Polymers / 255
8.5 Conclusions / 262
9 C2 Chiral Biaryl Unit-Based Helical Polymers and Their Application to
Asymmetric Catalysis 267
Takeshi Maeda and Toshikazu Takata
9.1 Introduction / 267
9.2 Synthesis of C2 Chiral Unit-based Helical Polymers / 269
9.3 Asymmetric Reactions Catalyzed by Helical Polymer Catalysts / 282
9.4 Conclusions / 289
10 Immobilization of Multicomponent Asymmetric Catalysts (MACs) 293
Hiroaki Sasai and Shinobu Takizawa
10.1 Introduction / 293
10.2 Dendrimer-Supported and Dendronized Polymer-supported MACs / 294
10.3 Nanoparticles as Supports for Chiral Catalysts [13] / 302
10.4 The Catalyst Analog Approach [24] / 311
10.5 Metal-bridged Polymers as Heterogeneous Catalysts: An Immobilization
Method for MACs Without Using Any Support [26] / 314
10.6 Conclusion / 318
11 Optically Active Polymer and Dendrimer Synthesis and Their Use in
Asymmetric Synthesis 323
Qiao-Sheng Hu and Lin Pu
11.1 Introduction / 323
11.2 Synthesis and Application of BINOL/BINAP-based Optically Active
Polymers / 324
11.3 Synthesis and Application of Optically Active Dendrimers / 355
11.4 Conclusions / 360
12 Asymmetric Polymerizations of N-Substituted Maleimides 365
Kenjiro Onimura and Tsutomu Oishi
12.1 Introduction / 365
12.2 Chirality of 1-Mono- or 1,1-Disubstituted and 1,2-Disubstituted
Olefins / 365
12.3 Asymmetric Polymerizations of Achiral N-Substituted Maleimides / 368
12.4 Anionic Polymerization Mechanism of RMI / 371
12.5 Asymmetric Polymerizations of Chiral N-Substituted Maleimides / 372
12.6 Structure and Absolute Stereochemistry of Poly(RMI) / 373
12.7 Asymmetric Radical Polymerizations ofN-Substituted Maleimides / 378
12.8 Chiral Discrimination Using Poly(RMI) / 378
12.9 Conclusions / 384
13 Synthesis of Hyperbranched Polymer Having Binaphthol Units via Oxidative
Cross-Coupling Polymerization 389
Shigeki Habaue
13.1 Introduction / 389
13.2 Oxidative Cross-coupling Reaction between 2-Naphthol and
3-Hydroxy-2-naphthoate / 391
13.3 Oxidative Cross-coupling Polymerization Affording Linear
Poly(binaphthol) / 392
13.4 Oxidative Cross-coupling Polymerization Leading to a Hyperbranched
Polymer / 396
13.5 Photoluminescence Properties of Hyperbranched Polymers / 400
13.6 Conclusions / 403
14 Optically Active Polyketones 407
Kyoko Nozaki
14.1 Introduction / 407
14.2 Asymmetric Synthesis of Isotactic Poly(propylene-alt-co) / 409
14.3 Asymmetric Synthesis of Isotactic Syndiotactic Poly(styrene-alt-co) /
411
14.4 Asymmetric Terpolymers Consisting of Two Kinds of Olefins and Carbon
Monoxide / 413
14.5 Asymmetric Polymerization of Other Olefins with CO / 414
14.6 Chemical Transformations of Optically Active Polyketones / 415
14.7 Conformational Studies on the Optically Active Polyketones / 416
14.8 Conclusions / 419
15 Synthesis and Function of Chiral p-Conjugated Polymers from
Phenylacetylenes 423
Toshiki Aoki, Takashi Kaneko, and Masahiro Teraguchi
15.1 Introduction / 423
15.2 Helix-sense-selective Polymerization (HSSP) of Substituted
Phenylacetylenes and Function of the Resulting One-handed Helical
Poly(phenylacetylene)s / 425
15.3 Chiral Desubstitution of Side Groups in Membrane State / 439
15.4 Synthesis of Chiral Polyradicals / 446
16 P-Stereogenic Oligomers, Polymers, and Related Cyclic Compounds 457
Yasuhiro Morisaki and Yoshiki Chujo
16.1 Introduction / 457
16.2 P-Stereogenic Oligomers Containing Chiral "P" Atoms in the Main Chain
/ 458
16.3 P-Stereogenic Polymers Containing Chiral "P" Atoms in the Main Chain /
470
16.4 Cyclic Phosphines Using P-Stereogenic Oligomers as Building Blocks /
475
16.5 Conclusions / 485
INDEX 489