392,95 €
392,95 €
inkl. MwSt.
Sofort per Download lieferbar
196 °P sammeln
392,95 €
Als Download kaufen
392,95 €
inkl. MwSt.
Sofort per Download lieferbar
196 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
392,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
196 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This broad-based, introductory reference provides excellent discussions regarding the hydration of Portland cement, durability problems in concrete, mechanisms of concrete deterioration, and interaction of polymers in concrete.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 6.37MB
This broad-based, introductory reference provides excellent discussions regarding the hydration of Portland cement, durability problems in concrete, mechanisms of concrete deterioration, and interaction of polymers in concrete.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 224
- Erscheinungstermin: 11. August 2020
- Englisch
- ISBN-13: 9781000141573
- Artikelnr.: 59898477
- Verlag: Taylor & Francis
- Seitenzahl: 224
- Erscheinungstermin: 11. August 2020
- Englisch
- ISBN-13: 9781000141573
- Artikelnr.: 59898477
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Satish Chandra, Yoshihiko Ohama
L INTRODUCTION
2. NATURAL AND SYNTHETIC POLYMERS
2.1 Natural Polymers
2.1.1 The Oldest Natural Polymer, Bitumen
2.1.2 Use of Asphalt as an Impregnation Material
2.1.3 Materials Used in the Great Wall of China
2.1.4 Materials Used in India
2.1.5 Materials Used in Other Places
2.2 Synthetic Polymers
2.2.1 Soil Stabilization with Synthetic Polymers
2.2.2 Early Use of Synthetic Polymers in Concrete
2.2.3 Thermoplastics, Thermosets, and Elastomers
2.2.4 Water
Soluble Polymers
2.3 Concluding Remarks
3. DURABILITY PROBLEMS IN CONCRETE
3.1 Chemical Additives
3.2 Carbonation
3.3 Industrial Gases
3.4 Alkali
Aggregate Reaction
3.5 Water as an Agent of Deterioration
3.6 Need for Long
Term Research
3.7 Choice of Building Site
3.8 Errors in Design and Poor Workmanship
3.9 Some Cases
3.9.1 Bridges
3.9.2 Concrete Balconies
3.10 Reinforced Concrete Chimneys
3.11 Poor
Quality Aggregates
3.12 Corrosion of Steel Reinforcement
3.13 Freeze
Thaw Resistance
3.14 Concluding Remarks
4. MECHANISMS OF CONCRETE DETERIORATION
4.1 Carbonation of Concrete
4.1.1 Chemical Reaction
4.1.2 pH Profile
4.1.3 Shrinkage
Humidity Relationship
4.1.4 Effects of Cracks
4.2 Chloride
Induced Corrosion
4.3 Alkali
Aggregate Reaction
4.3.1 Alkali
Silica Reaction
4.3.2 Alkali
Carbonate Reaction
4.3.3 Alkali
Silicate Reaction
4.4 Freeze
Thaw Attack
4.4.1 Hydraulic Pressure
4.4.2 Osmotic Pressure
4.4.3 Chemical Interactions
4.5 Erosion and Cavitation
4.6 Chemical Attacks
4.6.1 Pollution and Acid Attack
4.6.2 Sulfate Attack
4.6.3 Ammonium Salts Attack
4.6.3.1 Ammonium Sulfate Action
4.6.3.2 Ammonium Chloride Action
4.6.3.3 Ammonium Nitrate Action
4.7 Efflorescence
4.8 Concluding Remarks
5. CLASSIFICATION OF CONCRETE
POLYMER COMPOSITES
5.1 Polymer
Modified (or Cement) Mortar and Concrete
5.1.1 Definition
5.1.2 Principles of Polymer Modification
5.1.2.1 Latex Modification
5.1.2.2 Modification with Redispersible Polymer Powders
5.1.2.3 Modification with Water
Soluble Polymers
5.1.2.4 Modification with Liquid Resins
5.1.2.5 Modification with Monomers
5.1.3 Process Technology
5.1.3.1 Materials
5.1.3.2 Mix Proportioning
5.1.3.3 Mixing
5.1.3.4 Placing and Curing
5.2 Polymer Mortar and Concrete
5.2.1 Definition
5.2.2 Principle of Polymer Replacement
5.2.3 Process Technology
5.2.3.1 Materials
5.2.3.2 Mix Proportioning
5.2.3.3 Mixing
5.2.3.4 Placing and Curing
5.3 Polymer
Impregnated Mortar and Concrete
5.3.1 Definition
5.3.2 Principle of Polymer Impregnation
5.3.3 Process Technology
5.3.3.1 Materials.,
5.3.3.2 Manufacturing Process for Precast Products .
5.3.3.3 Field Polymer Impregnation Process.
PROPERTIES OF CONCRETE
POLYMER COMPOSITES
6.1 Properties of Polymer
Modified Mortar and Concrete
6.1.1 Properties of Fresh Mortar and Concrete Using
Polymer Latexes
6.1.1.1 Workability
6.1.1.2 Air Entrainment
6.1.1.3 Water Retention
6.1.1.4 Bleeding and Segregation
6.1.1.5 Setting Behavior. .
6.1.2 Properties of Hardened Mortar and Concrete
Using Polymer Latexes
6.1.2.1 Strength
6.1.2.2 Deformability, Modulus of Elasticity,
and Poisson's Ratio
6.1.2.3 Shrinkage, Creep, and Thermal Expansion
6.1.2.4 Waterproofness and Water Resistance
6.1.2.5 Resistance to Chloride Ion Penetration and Carbonation
6.1.2.6 Pore Size Distribution and Oxygen Diffusion Resistance
6.1.2.7 Adhesion . . .
6.1.2.8 Impact Resistance
6.1.2.9 Abrasion Resistance
6.1.2.10 Chemical Resistance
6.1.2.11 Thermal Resistance and Fire Resistance
6.1.2.12 Freeze
Thaw Durability and Weatherability
6.1.3 Properties of Redispersible Polymer Powder
Modified Systems
6.1.4 Properties of Water
Soluble Polymer
Modified Systems
6.1.5 Properties of Liquid Resin
Modified Systems
6.2 Properties of Polymer Mortar and Concrete
6.2.1 Properties of Fresh Mortar and Concrete
6.2.1.1 Workability
6.2.1.2 Working Life and Hardening Time
6.2.1.3 Bleeding and Segregation
6.2.1.4 Setting or Hardening Shrinkage
6.2.2 Properties of Hardened Mortar and Concrete
6.2.2.1 Strength
6.2.2.2 Deformability, Elastic Modulus and Creep .
6.2.2.3 Watertightness, Gas
Tightness, Freeze
Thaw Durability, and Water Resistance
6.2.2.4 Adhesion or Bond
6.2.2.5 Chemical Resistance. .
6.2.2.6 Abrasion Resistance, Impact Resistance, and Electrical Insulating Properties
6.2.2.1 Incombustibility and Fire Resistance
6.2.2.8 Weatherability or Weather Resistance
6.3 Properties of Polymer
Impregnated Concrete and Mortar
7. MECHANISMS OF CONCRETE
POLYMER INTERACTIONS
7.1 Hydration of Portland Cement
7.1.1 Hydration of Tricalcium Silicate
7.1.1.1 Initial Period of Reactivity
7.1.1.2 Induction or Dormant Period
7.1.1.3 Acceleration Period.
7.1.1.4 Final Stage
7.1.2 Hydration of Tricalcium Aluminate
7.2 Interaction
7.2.1 Polymer
Impregnated Concrete
7.2.2 Polymers Mixed in Concrete
7.2.3 Accelerators and Retarders
7.3 Natural Polymers
7.4 Synthetic Polymers
7.4.1 Interaction between Calcium Hydroxide and
Polymer Dispersion
7.4.2 Interaction between Calcium Silicates and Polymer
7.4.3 Interaction between Tricalcium Aluminate
and Polymers
7.4.4 Interaction with Portland Cement
7.5 Concluding Remarks
8. PRACTICAL APPLICATIONS OF CONCRETE
POLYMER
COMPOSITES
8.1 Applications of Polymer
Modified Mortar and Concrete
8.2 Applications of Polymer Mortar and Concrete
8.3 Applications of Polymer
Impregnated Mortar and Concrete
INDEX.
2. NATURAL AND SYNTHETIC POLYMERS
2.1 Natural Polymers
2.1.1 The Oldest Natural Polymer, Bitumen
2.1.2 Use of Asphalt as an Impregnation Material
2.1.3 Materials Used in the Great Wall of China
2.1.4 Materials Used in India
2.1.5 Materials Used in Other Places
2.2 Synthetic Polymers
2.2.1 Soil Stabilization with Synthetic Polymers
2.2.2 Early Use of Synthetic Polymers in Concrete
2.2.3 Thermoplastics, Thermosets, and Elastomers
2.2.4 Water
Soluble Polymers
2.3 Concluding Remarks
3. DURABILITY PROBLEMS IN CONCRETE
3.1 Chemical Additives
3.2 Carbonation
3.3 Industrial Gases
3.4 Alkali
Aggregate Reaction
3.5 Water as an Agent of Deterioration
3.6 Need for Long
Term Research
3.7 Choice of Building Site
3.8 Errors in Design and Poor Workmanship
3.9 Some Cases
3.9.1 Bridges
3.9.2 Concrete Balconies
3.10 Reinforced Concrete Chimneys
3.11 Poor
Quality Aggregates
3.12 Corrosion of Steel Reinforcement
3.13 Freeze
Thaw Resistance
3.14 Concluding Remarks
4. MECHANISMS OF CONCRETE DETERIORATION
4.1 Carbonation of Concrete
4.1.1 Chemical Reaction
4.1.2 pH Profile
4.1.3 Shrinkage
Humidity Relationship
4.1.4 Effects of Cracks
4.2 Chloride
Induced Corrosion
4.3 Alkali
Aggregate Reaction
4.3.1 Alkali
Silica Reaction
4.3.2 Alkali
Carbonate Reaction
4.3.3 Alkali
Silicate Reaction
4.4 Freeze
Thaw Attack
4.4.1 Hydraulic Pressure
4.4.2 Osmotic Pressure
4.4.3 Chemical Interactions
4.5 Erosion and Cavitation
4.6 Chemical Attacks
4.6.1 Pollution and Acid Attack
4.6.2 Sulfate Attack
4.6.3 Ammonium Salts Attack
4.6.3.1 Ammonium Sulfate Action
4.6.3.2 Ammonium Chloride Action
4.6.3.3 Ammonium Nitrate Action
4.7 Efflorescence
4.8 Concluding Remarks
5. CLASSIFICATION OF CONCRETE
POLYMER COMPOSITES
5.1 Polymer
Modified (or Cement) Mortar and Concrete
5.1.1 Definition
5.1.2 Principles of Polymer Modification
5.1.2.1 Latex Modification
5.1.2.2 Modification with Redispersible Polymer Powders
5.1.2.3 Modification with Water
Soluble Polymers
5.1.2.4 Modification with Liquid Resins
5.1.2.5 Modification with Monomers
5.1.3 Process Technology
5.1.3.1 Materials
5.1.3.2 Mix Proportioning
5.1.3.3 Mixing
5.1.3.4 Placing and Curing
5.2 Polymer Mortar and Concrete
5.2.1 Definition
5.2.2 Principle of Polymer Replacement
5.2.3 Process Technology
5.2.3.1 Materials
5.2.3.2 Mix Proportioning
5.2.3.3 Mixing
5.2.3.4 Placing and Curing
5.3 Polymer
Impregnated Mortar and Concrete
5.3.1 Definition
5.3.2 Principle of Polymer Impregnation
5.3.3 Process Technology
5.3.3.1 Materials.,
5.3.3.2 Manufacturing Process for Precast Products .
5.3.3.3 Field Polymer Impregnation Process.
PROPERTIES OF CONCRETE
POLYMER COMPOSITES
6.1 Properties of Polymer
Modified Mortar and Concrete
6.1.1 Properties of Fresh Mortar and Concrete Using
Polymer Latexes
6.1.1.1 Workability
6.1.1.2 Air Entrainment
6.1.1.3 Water Retention
6.1.1.4 Bleeding and Segregation
6.1.1.5 Setting Behavior. .
6.1.2 Properties of Hardened Mortar and Concrete
Using Polymer Latexes
6.1.2.1 Strength
6.1.2.2 Deformability, Modulus of Elasticity,
and Poisson's Ratio
6.1.2.3 Shrinkage, Creep, and Thermal Expansion
6.1.2.4 Waterproofness and Water Resistance
6.1.2.5 Resistance to Chloride Ion Penetration and Carbonation
6.1.2.6 Pore Size Distribution and Oxygen Diffusion Resistance
6.1.2.7 Adhesion . . .
6.1.2.8 Impact Resistance
6.1.2.9 Abrasion Resistance
6.1.2.10 Chemical Resistance
6.1.2.11 Thermal Resistance and Fire Resistance
6.1.2.12 Freeze
Thaw Durability and Weatherability
6.1.3 Properties of Redispersible Polymer Powder
Modified Systems
6.1.4 Properties of Water
Soluble Polymer
Modified Systems
6.1.5 Properties of Liquid Resin
Modified Systems
6.2 Properties of Polymer Mortar and Concrete
6.2.1 Properties of Fresh Mortar and Concrete
6.2.1.1 Workability
6.2.1.2 Working Life and Hardening Time
6.2.1.3 Bleeding and Segregation
6.2.1.4 Setting or Hardening Shrinkage
6.2.2 Properties of Hardened Mortar and Concrete
6.2.2.1 Strength
6.2.2.2 Deformability, Elastic Modulus and Creep .
6.2.2.3 Watertightness, Gas
Tightness, Freeze
Thaw Durability, and Water Resistance
6.2.2.4 Adhesion or Bond
6.2.2.5 Chemical Resistance. .
6.2.2.6 Abrasion Resistance, Impact Resistance, and Electrical Insulating Properties
6.2.2.1 Incombustibility and Fire Resistance
6.2.2.8 Weatherability or Weather Resistance
6.3 Properties of Polymer
Impregnated Concrete and Mortar
7. MECHANISMS OF CONCRETE
POLYMER INTERACTIONS
7.1 Hydration of Portland Cement
7.1.1 Hydration of Tricalcium Silicate
7.1.1.1 Initial Period of Reactivity
7.1.1.2 Induction or Dormant Period
7.1.1.3 Acceleration Period.
7.1.1.4 Final Stage
7.1.2 Hydration of Tricalcium Aluminate
7.2 Interaction
7.2.1 Polymer
Impregnated Concrete
7.2.2 Polymers Mixed in Concrete
7.2.3 Accelerators and Retarders
7.3 Natural Polymers
7.4 Synthetic Polymers
7.4.1 Interaction between Calcium Hydroxide and
Polymer Dispersion
7.4.2 Interaction between Calcium Silicates and Polymer
7.4.3 Interaction between Tricalcium Aluminate
and Polymers
7.4.4 Interaction with Portland Cement
7.5 Concluding Remarks
8. PRACTICAL APPLICATIONS OF CONCRETE
POLYMER
COMPOSITES
8.1 Applications of Polymer
Modified Mortar and Concrete
8.2 Applications of Polymer Mortar and Concrete
8.3 Applications of Polymer
Impregnated Mortar and Concrete
INDEX.
L INTRODUCTION
2. NATURAL AND SYNTHETIC POLYMERS
2.1 Natural Polymers
2.1.1 The Oldest Natural Polymer, Bitumen
2.1.2 Use of Asphalt as an Impregnation Material
2.1.3 Materials Used in the Great Wall of China
2.1.4 Materials Used in India
2.1.5 Materials Used in Other Places
2.2 Synthetic Polymers
2.2.1 Soil Stabilization with Synthetic Polymers
2.2.2 Early Use of Synthetic Polymers in Concrete
2.2.3 Thermoplastics, Thermosets, and Elastomers
2.2.4 Water
Soluble Polymers
2.3 Concluding Remarks
3. DURABILITY PROBLEMS IN CONCRETE
3.1 Chemical Additives
3.2 Carbonation
3.3 Industrial Gases
3.4 Alkali
Aggregate Reaction
3.5 Water as an Agent of Deterioration
3.6 Need for Long
Term Research
3.7 Choice of Building Site
3.8 Errors in Design and Poor Workmanship
3.9 Some Cases
3.9.1 Bridges
3.9.2 Concrete Balconies
3.10 Reinforced Concrete Chimneys
3.11 Poor
Quality Aggregates
3.12 Corrosion of Steel Reinforcement
3.13 Freeze
Thaw Resistance
3.14 Concluding Remarks
4. MECHANISMS OF CONCRETE DETERIORATION
4.1 Carbonation of Concrete
4.1.1 Chemical Reaction
4.1.2 pH Profile
4.1.3 Shrinkage
Humidity Relationship
4.1.4 Effects of Cracks
4.2 Chloride
Induced Corrosion
4.3 Alkali
Aggregate Reaction
4.3.1 Alkali
Silica Reaction
4.3.2 Alkali
Carbonate Reaction
4.3.3 Alkali
Silicate Reaction
4.4 Freeze
Thaw Attack
4.4.1 Hydraulic Pressure
4.4.2 Osmotic Pressure
4.4.3 Chemical Interactions
4.5 Erosion and Cavitation
4.6 Chemical Attacks
4.6.1 Pollution and Acid Attack
4.6.2 Sulfate Attack
4.6.3 Ammonium Salts Attack
4.6.3.1 Ammonium Sulfate Action
4.6.3.2 Ammonium Chloride Action
4.6.3.3 Ammonium Nitrate Action
4.7 Efflorescence
4.8 Concluding Remarks
5. CLASSIFICATION OF CONCRETE
POLYMER COMPOSITES
5.1 Polymer
Modified (or Cement) Mortar and Concrete
5.1.1 Definition
5.1.2 Principles of Polymer Modification
5.1.2.1 Latex Modification
5.1.2.2 Modification with Redispersible Polymer Powders
5.1.2.3 Modification with Water
Soluble Polymers
5.1.2.4 Modification with Liquid Resins
5.1.2.5 Modification with Monomers
5.1.3 Process Technology
5.1.3.1 Materials
5.1.3.2 Mix Proportioning
5.1.3.3 Mixing
5.1.3.4 Placing and Curing
5.2 Polymer Mortar and Concrete
5.2.1 Definition
5.2.2 Principle of Polymer Replacement
5.2.3 Process Technology
5.2.3.1 Materials
5.2.3.2 Mix Proportioning
5.2.3.3 Mixing
5.2.3.4 Placing and Curing
5.3 Polymer
Impregnated Mortar and Concrete
5.3.1 Definition
5.3.2 Principle of Polymer Impregnation
5.3.3 Process Technology
5.3.3.1 Materials.,
5.3.3.2 Manufacturing Process for Precast Products .
5.3.3.3 Field Polymer Impregnation Process.
PROPERTIES OF CONCRETE
POLYMER COMPOSITES
6.1 Properties of Polymer
Modified Mortar and Concrete
6.1.1 Properties of Fresh Mortar and Concrete Using
Polymer Latexes
6.1.1.1 Workability
6.1.1.2 Air Entrainment
6.1.1.3 Water Retention
6.1.1.4 Bleeding and Segregation
6.1.1.5 Setting Behavior. .
6.1.2 Properties of Hardened Mortar and Concrete
Using Polymer Latexes
6.1.2.1 Strength
6.1.2.2 Deformability, Modulus of Elasticity,
and Poisson's Ratio
6.1.2.3 Shrinkage, Creep, and Thermal Expansion
6.1.2.4 Waterproofness and Water Resistance
6.1.2.5 Resistance to Chloride Ion Penetration and Carbonation
6.1.2.6 Pore Size Distribution and Oxygen Diffusion Resistance
6.1.2.7 Adhesion . . .
6.1.2.8 Impact Resistance
6.1.2.9 Abrasion Resistance
6.1.2.10 Chemical Resistance
6.1.2.11 Thermal Resistance and Fire Resistance
6.1.2.12 Freeze
Thaw Durability and Weatherability
6.1.3 Properties of Redispersible Polymer Powder
Modified Systems
6.1.4 Properties of Water
Soluble Polymer
Modified Systems
6.1.5 Properties of Liquid Resin
Modified Systems
6.2 Properties of Polymer Mortar and Concrete
6.2.1 Properties of Fresh Mortar and Concrete
6.2.1.1 Workability
6.2.1.2 Working Life and Hardening Time
6.2.1.3 Bleeding and Segregation
6.2.1.4 Setting or Hardening Shrinkage
6.2.2 Properties of Hardened Mortar and Concrete
6.2.2.1 Strength
6.2.2.2 Deformability, Elastic Modulus and Creep .
6.2.2.3 Watertightness, Gas
Tightness, Freeze
Thaw Durability, and Water Resistance
6.2.2.4 Adhesion or Bond
6.2.2.5 Chemical Resistance. .
6.2.2.6 Abrasion Resistance, Impact Resistance, and Electrical Insulating Properties
6.2.2.1 Incombustibility and Fire Resistance
6.2.2.8 Weatherability or Weather Resistance
6.3 Properties of Polymer
Impregnated Concrete and Mortar
7. MECHANISMS OF CONCRETE
POLYMER INTERACTIONS
7.1 Hydration of Portland Cement
7.1.1 Hydration of Tricalcium Silicate
7.1.1.1 Initial Period of Reactivity
7.1.1.2 Induction or Dormant Period
7.1.1.3 Acceleration Period.
7.1.1.4 Final Stage
7.1.2 Hydration of Tricalcium Aluminate
7.2 Interaction
7.2.1 Polymer
Impregnated Concrete
7.2.2 Polymers Mixed in Concrete
7.2.3 Accelerators and Retarders
7.3 Natural Polymers
7.4 Synthetic Polymers
7.4.1 Interaction between Calcium Hydroxide and
Polymer Dispersion
7.4.2 Interaction between Calcium Silicates and Polymer
7.4.3 Interaction between Tricalcium Aluminate
and Polymers
7.4.4 Interaction with Portland Cement
7.5 Concluding Remarks
8. PRACTICAL APPLICATIONS OF CONCRETE
POLYMER
COMPOSITES
8.1 Applications of Polymer
Modified Mortar and Concrete
8.2 Applications of Polymer Mortar and Concrete
8.3 Applications of Polymer
Impregnated Mortar and Concrete
INDEX.
2. NATURAL AND SYNTHETIC POLYMERS
2.1 Natural Polymers
2.1.1 The Oldest Natural Polymer, Bitumen
2.1.2 Use of Asphalt as an Impregnation Material
2.1.3 Materials Used in the Great Wall of China
2.1.4 Materials Used in India
2.1.5 Materials Used in Other Places
2.2 Synthetic Polymers
2.2.1 Soil Stabilization with Synthetic Polymers
2.2.2 Early Use of Synthetic Polymers in Concrete
2.2.3 Thermoplastics, Thermosets, and Elastomers
2.2.4 Water
Soluble Polymers
2.3 Concluding Remarks
3. DURABILITY PROBLEMS IN CONCRETE
3.1 Chemical Additives
3.2 Carbonation
3.3 Industrial Gases
3.4 Alkali
Aggregate Reaction
3.5 Water as an Agent of Deterioration
3.6 Need for Long
Term Research
3.7 Choice of Building Site
3.8 Errors in Design and Poor Workmanship
3.9 Some Cases
3.9.1 Bridges
3.9.2 Concrete Balconies
3.10 Reinforced Concrete Chimneys
3.11 Poor
Quality Aggregates
3.12 Corrosion of Steel Reinforcement
3.13 Freeze
Thaw Resistance
3.14 Concluding Remarks
4. MECHANISMS OF CONCRETE DETERIORATION
4.1 Carbonation of Concrete
4.1.1 Chemical Reaction
4.1.2 pH Profile
4.1.3 Shrinkage
Humidity Relationship
4.1.4 Effects of Cracks
4.2 Chloride
Induced Corrosion
4.3 Alkali
Aggregate Reaction
4.3.1 Alkali
Silica Reaction
4.3.2 Alkali
Carbonate Reaction
4.3.3 Alkali
Silicate Reaction
4.4 Freeze
Thaw Attack
4.4.1 Hydraulic Pressure
4.4.2 Osmotic Pressure
4.4.3 Chemical Interactions
4.5 Erosion and Cavitation
4.6 Chemical Attacks
4.6.1 Pollution and Acid Attack
4.6.2 Sulfate Attack
4.6.3 Ammonium Salts Attack
4.6.3.1 Ammonium Sulfate Action
4.6.3.2 Ammonium Chloride Action
4.6.3.3 Ammonium Nitrate Action
4.7 Efflorescence
4.8 Concluding Remarks
5. CLASSIFICATION OF CONCRETE
POLYMER COMPOSITES
5.1 Polymer
Modified (or Cement) Mortar and Concrete
5.1.1 Definition
5.1.2 Principles of Polymer Modification
5.1.2.1 Latex Modification
5.1.2.2 Modification with Redispersible Polymer Powders
5.1.2.3 Modification with Water
Soluble Polymers
5.1.2.4 Modification with Liquid Resins
5.1.2.5 Modification with Monomers
5.1.3 Process Technology
5.1.3.1 Materials
5.1.3.2 Mix Proportioning
5.1.3.3 Mixing
5.1.3.4 Placing and Curing
5.2 Polymer Mortar and Concrete
5.2.1 Definition
5.2.2 Principle of Polymer Replacement
5.2.3 Process Technology
5.2.3.1 Materials
5.2.3.2 Mix Proportioning
5.2.3.3 Mixing
5.2.3.4 Placing and Curing
5.3 Polymer
Impregnated Mortar and Concrete
5.3.1 Definition
5.3.2 Principle of Polymer Impregnation
5.3.3 Process Technology
5.3.3.1 Materials.,
5.3.3.2 Manufacturing Process for Precast Products .
5.3.3.3 Field Polymer Impregnation Process.
PROPERTIES OF CONCRETE
POLYMER COMPOSITES
6.1 Properties of Polymer
Modified Mortar and Concrete
6.1.1 Properties of Fresh Mortar and Concrete Using
Polymer Latexes
6.1.1.1 Workability
6.1.1.2 Air Entrainment
6.1.1.3 Water Retention
6.1.1.4 Bleeding and Segregation
6.1.1.5 Setting Behavior. .
6.1.2 Properties of Hardened Mortar and Concrete
Using Polymer Latexes
6.1.2.1 Strength
6.1.2.2 Deformability, Modulus of Elasticity,
and Poisson's Ratio
6.1.2.3 Shrinkage, Creep, and Thermal Expansion
6.1.2.4 Waterproofness and Water Resistance
6.1.2.5 Resistance to Chloride Ion Penetration and Carbonation
6.1.2.6 Pore Size Distribution and Oxygen Diffusion Resistance
6.1.2.7 Adhesion . . .
6.1.2.8 Impact Resistance
6.1.2.9 Abrasion Resistance
6.1.2.10 Chemical Resistance
6.1.2.11 Thermal Resistance and Fire Resistance
6.1.2.12 Freeze
Thaw Durability and Weatherability
6.1.3 Properties of Redispersible Polymer Powder
Modified Systems
6.1.4 Properties of Water
Soluble Polymer
Modified Systems
6.1.5 Properties of Liquid Resin
Modified Systems
6.2 Properties of Polymer Mortar and Concrete
6.2.1 Properties of Fresh Mortar and Concrete
6.2.1.1 Workability
6.2.1.2 Working Life and Hardening Time
6.2.1.3 Bleeding and Segregation
6.2.1.4 Setting or Hardening Shrinkage
6.2.2 Properties of Hardened Mortar and Concrete
6.2.2.1 Strength
6.2.2.2 Deformability, Elastic Modulus and Creep .
6.2.2.3 Watertightness, Gas
Tightness, Freeze
Thaw Durability, and Water Resistance
6.2.2.4 Adhesion or Bond
6.2.2.5 Chemical Resistance. .
6.2.2.6 Abrasion Resistance, Impact Resistance, and Electrical Insulating Properties
6.2.2.1 Incombustibility and Fire Resistance
6.2.2.8 Weatherability or Weather Resistance
6.3 Properties of Polymer
Impregnated Concrete and Mortar
7. MECHANISMS OF CONCRETE
POLYMER INTERACTIONS
7.1 Hydration of Portland Cement
7.1.1 Hydration of Tricalcium Silicate
7.1.1.1 Initial Period of Reactivity
7.1.1.2 Induction or Dormant Period
7.1.1.3 Acceleration Period.
7.1.1.4 Final Stage
7.1.2 Hydration of Tricalcium Aluminate
7.2 Interaction
7.2.1 Polymer
Impregnated Concrete
7.2.2 Polymers Mixed in Concrete
7.2.3 Accelerators and Retarders
7.3 Natural Polymers
7.4 Synthetic Polymers
7.4.1 Interaction between Calcium Hydroxide and
Polymer Dispersion
7.4.2 Interaction between Calcium Silicates and Polymer
7.4.3 Interaction between Tricalcium Aluminate
and Polymers
7.4.4 Interaction with Portland Cement
7.5 Concluding Remarks
8. PRACTICAL APPLICATIONS OF CONCRETE
POLYMER
COMPOSITES
8.1 Applications of Polymer
Modified Mortar and Concrete
8.2 Applications of Polymer Mortar and Concrete
8.3 Applications of Polymer
Impregnated Mortar and Concrete
INDEX.