Porous Media Transport Phenomena (eBook, PDF)
Alle Infos zum eBook verschenken
Porous Media Transport Phenomena (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book that makes transport in porous media accessible to students and researchers alike Porous Media Transport Phenomena covers the general theories behind flow and transport in porous media--a solid permeated by a network of pores filled with fluid--which encompasses rocks, biological tissues, ceramics, and much more. Designed for use in graduate courses in various disciplines involving fluids in porous materials, and as a reference for practitioners in the field, the text includes exercises and practical applications while avoiding the complex math found in other books, allowing the…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 9.94MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 488
- Erscheinungstermin: 1. Juni 2011
- Englisch
- ISBN-13: 9781118086438
- Artikelnr.: 37343375
- Verlag: John Wiley & Sons
- Seitenzahl: 488
- Erscheinungstermin: 1. Juni 2011
- Englisch
- ISBN-13: 9781118086438
- Artikelnr.: 37343375
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
About the Author xix
Chapter 1. Overview 1
1.1 Introduction 1
1.2 Synopses of Topics Covered in Various Chapters 3
Chapter 2. Transport Properties of Porous Media 7
2.1 Introduction 7
2.2 Permeability of Porous Media Based on the Bundle of Tortuous Leaky-Tube
Model 10
2.3 Permeability of Porous Media Undergoing Alteration by Scale Deposition
33
2.4 Temperature Effect of Permeability 44
2.5 Effects of Other Factors on Permeability 54
2.6 Exercises 54
Chapter 3. Macroscopic Transport Equations 57
3.1 Introduction 57
3.2 REV 58
3.3 Volume-Averaging Rules 59
3.4 Mass-Area Averaging Rules 67
3.5 Surface Area Averaging Rules 68
3.6 Applications of Volume and Surface Averaging Rules 68
3.7 Double Decomposition for Turbulent Processes in Porous Media 70
3.8 Tortuosity Effect 73
3.9 Macroscopic Transport Equations by Control Volume Analysis 74
3.10 Generalized Volume-Averaged Transport Equations 76
3.11 Exercises 76
Chapter 4. Scaling and Correlation of Transport in Porous Media 79
4.1 Introduction 79
4.2 Dimensional and Inspectional Analysis Methods 81
4.3 Scaling 84
4.4 Exercises 92
Chapter 5. Fluid Motion in Porous Media 97
5.1 Introduction 97
5.2 Flow Potential 98
5.3 Modification of Darcy's Law for Bulk- versus Fluid Volume Average
Pressures 99
5.4 Macroscopic Equation of Motion from the Control Volume Approach and
Dimensional Analysis 102
5.5 Modification of Darcy's Law for the Threshold Pressure Gradient 105
5.6 Convenient Formulations of the Forchheimer Equation 108
5.7 Determination of the Parameters if the Forchheimer Equation 111
5.8 Flow Demarcation Criteria 115
5.9 Entropy Generation in Porous Media 117
5.10 Viscous Dissipation on Porous Media 123
5.11 Generalized Darcy's Law by Control Volume Analysis 124
5.12 Equation of Motion for Non-Newtonian Fluids 134
5.13 Exercises 138
Chapter 6. Gas Transport in Tight Porous Media 145
6.1 Introduction 145
6.2 Gas Glow through a Capillary Hydraulic Tube 146
6.3 Relationship between Transports Expressed on Different Bases 147
6.4 The Mean Free Path of Molecules: FHS versus VHS 149
6.5 The Knudsen Number 150
6.6 Flow Regimes and Gas Transport as Isothermal Conditions 152
6.7 Gas Transport at Nonisothermal Conditions 159
6.8 Unified Hagen-Poiseuille-Type Equation fro Apparent Gas Permeability
160
6.9 Single-Component Gas Glow 165
6.10 Multicomponent Gas Flow 166
6.11 Effect of Different Flow Regimes in a Capillary Flow Path and the
Extended Klinkenberg Equation 168
6.12 Effect of Pore Size Distribution on Gas Flow through Porous Media 170
6.13 Exercises 174
Chapter 7. Fluid Transport Through Porous Media 177
7.1 Introduction 177
7.2 Coupling Single-Phase Mass and Momentum Balance Equations 178
7.3 Cylindrical Leaky-Tank Reservoir Model Including the Non-Darcy Effect
179
7.4 Coupling Two-Phase Mass and Momentum Balance Equations for Immiscible
Displacement 186
7.5 Potential Flow Problems in Porous Media 200
7.6 Streamline/Stream Tube Formulation and Front Tracking 205
7.7 Exercises 218
Chapter 8. Parameters of Fluid Transfer in Porous Media 227
8.1 Introduction 227
8.2 Wettability and Wettability Index 230
8.3 Capillary Pressure 231
8.4 Work of Fluid Displacement 234
8.5 Temperature Effect on Wettability-Related Properties of Porous Media
235
8.6 Direct Methods for the Determination of Porous Media Flow Functions and
Parameters 238
8.7 Indirect Methods for the Determination of Porous Media Flow Functions
and Parameters 259
8.8 Exercises 276
Chapter 9. Mass, Momentum, and Energy Transport in Porous Media 281
9.1 Introduction 281
9.2 Dispersive Transport of Species in Heterogeneous and Anisotropic Porous
Media 282
9.3 General Multiphase Fully Compositional Nonisothermal Mixture Model 288
9.4 Formulation of Source/Sink Terms in Conservation Equations 292
9.5 Isothermal Black Oil Model of a Nonvolatile Oil System 295
9.6 Isothermal Limited Compositional Model of a Volatile Oil System 298
9.7 Flow of Gas and Vaporizing Water Phases in the Near-Wellbore Region 299
9.8 Flow of Condensate and Gas Phase Containing Noncondensable Gas Species
in the Near-Wellbore Region 301
9.9 Shape-Averaged Formulations 305
9.10 Conductive Heat Transfer with Phase Change 307
9.11 Simultaneous Phase Transition and Transport in Porous Media Containing
Gas Hydrates 328
9.12 Modeling Nonisothermal Hydrocarbon Fluid Flow Considering
Expansion/Compression and Joule-Thomson Effects 338
9.13 Exercises 346
Chapter 10. Suspended Particulate Transport in Porous Media 353
10.1 Introduction 353
10.2 Deep-Bed Filtration under Nonisothermal Conditions 355
10.3 Cake Filtration over an Effective Filter 370
10.4 Exercises 379
Chapter 11. Transport in Heterogeneous Porous Media 383
11.1 Introduction 383
11.2 Transport Units and Transport in Heterogeneous Porous Media 385
11.3 Models for Transport in Fissured/Fractured Porous Media 388
11.4 Species Transport in Fractured Porous Media 394
11.5 Immiscible Displacement in Naturally Fractured Porous Media 396
11.6 Method of Weighted Sum (Quadrature) Numerical Solutions 410
11.7 Finite Difference Numerical Solution 415
11.8 Exercises 425
References 429
Index 455
About the Author xix
Chapter 1. Overview 1
1.1 Introduction 1
1.2 Synopses of Topics Covered in Various Chapters 3
Chapter 2. Transport Properties of Porous Media 7
2.1 Introduction 7
2.2 Permeability of Porous Media Based on the Bundle of Tortuous Leaky-Tube
Model 10
2.3 Permeability of Porous Media Undergoing Alteration by Scale Deposition
33
2.4 Temperature Effect of Permeability 44
2.5 Effects of Other Factors on Permeability 54
2.6 Exercises 54
Chapter 3. Macroscopic Transport Equations 57
3.1 Introduction 57
3.2 REV 58
3.3 Volume-Averaging Rules 59
3.4 Mass-Area Averaging Rules 67
3.5 Surface Area Averaging Rules 68
3.6 Applications of Volume and Surface Averaging Rules 68
3.7 Double Decomposition for Turbulent Processes in Porous Media 70
3.8 Tortuosity Effect 73
3.9 Macroscopic Transport Equations by Control Volume Analysis 74
3.10 Generalized Volume-Averaged Transport Equations 76
3.11 Exercises 76
Chapter 4. Scaling and Correlation of Transport in Porous Media 79
4.1 Introduction 79
4.2 Dimensional and Inspectional Analysis Methods 81
4.3 Scaling 84
4.4 Exercises 92
Chapter 5. Fluid Motion in Porous Media 97
5.1 Introduction 97
5.2 Flow Potential 98
5.3 Modification of Darcy's Law for Bulk- versus Fluid Volume Average
Pressures 99
5.4 Macroscopic Equation of Motion from the Control Volume Approach and
Dimensional Analysis 102
5.5 Modification of Darcy's Law for the Threshold Pressure Gradient 105
5.6 Convenient Formulations of the Forchheimer Equation 108
5.7 Determination of the Parameters if the Forchheimer Equation 111
5.8 Flow Demarcation Criteria 115
5.9 Entropy Generation in Porous Media 117
5.10 Viscous Dissipation on Porous Media 123
5.11 Generalized Darcy's Law by Control Volume Analysis 124
5.12 Equation of Motion for Non-Newtonian Fluids 134
5.13 Exercises 138
Chapter 6. Gas Transport in Tight Porous Media 145
6.1 Introduction 145
6.2 Gas Glow through a Capillary Hydraulic Tube 146
6.3 Relationship between Transports Expressed on Different Bases 147
6.4 The Mean Free Path of Molecules: FHS versus VHS 149
6.5 The Knudsen Number 150
6.6 Flow Regimes and Gas Transport as Isothermal Conditions 152
6.7 Gas Transport at Nonisothermal Conditions 159
6.8 Unified Hagen-Poiseuille-Type Equation fro Apparent Gas Permeability
160
6.9 Single-Component Gas Glow 165
6.10 Multicomponent Gas Flow 166
6.11 Effect of Different Flow Regimes in a Capillary Flow Path and the
Extended Klinkenberg Equation 168
6.12 Effect of Pore Size Distribution on Gas Flow through Porous Media 170
6.13 Exercises 174
Chapter 7. Fluid Transport Through Porous Media 177
7.1 Introduction 177
7.2 Coupling Single-Phase Mass and Momentum Balance Equations 178
7.3 Cylindrical Leaky-Tank Reservoir Model Including the Non-Darcy Effect
179
7.4 Coupling Two-Phase Mass and Momentum Balance Equations for Immiscible
Displacement 186
7.5 Potential Flow Problems in Porous Media 200
7.6 Streamline/Stream Tube Formulation and Front Tracking 205
7.7 Exercises 218
Chapter 8. Parameters of Fluid Transfer in Porous Media 227
8.1 Introduction 227
8.2 Wettability and Wettability Index 230
8.3 Capillary Pressure 231
8.4 Work of Fluid Displacement 234
8.5 Temperature Effect on Wettability-Related Properties of Porous Media
235
8.6 Direct Methods for the Determination of Porous Media Flow Functions and
Parameters 238
8.7 Indirect Methods for the Determination of Porous Media Flow Functions
and Parameters 259
8.8 Exercises 276
Chapter 9. Mass, Momentum, and Energy Transport in Porous Media 281
9.1 Introduction 281
9.2 Dispersive Transport of Species in Heterogeneous and Anisotropic Porous
Media 282
9.3 General Multiphase Fully Compositional Nonisothermal Mixture Model 288
9.4 Formulation of Source/Sink Terms in Conservation Equations 292
9.5 Isothermal Black Oil Model of a Nonvolatile Oil System 295
9.6 Isothermal Limited Compositional Model of a Volatile Oil System 298
9.7 Flow of Gas and Vaporizing Water Phases in the Near-Wellbore Region 299
9.8 Flow of Condensate and Gas Phase Containing Noncondensable Gas Species
in the Near-Wellbore Region 301
9.9 Shape-Averaged Formulations 305
9.10 Conductive Heat Transfer with Phase Change 307
9.11 Simultaneous Phase Transition and Transport in Porous Media Containing
Gas Hydrates 328
9.12 Modeling Nonisothermal Hydrocarbon Fluid Flow Considering
Expansion/Compression and Joule-Thomson Effects 338
9.13 Exercises 346
Chapter 10. Suspended Particulate Transport in Porous Media 353
10.1 Introduction 353
10.2 Deep-Bed Filtration under Nonisothermal Conditions 355
10.3 Cake Filtration over an Effective Filter 370
10.4 Exercises 379
Chapter 11. Transport in Heterogeneous Porous Media 383
11.1 Introduction 383
11.2 Transport Units and Transport in Heterogeneous Porous Media 385
11.3 Models for Transport in Fissured/Fractured Porous Media 388
11.4 Species Transport in Fractured Porous Media 394
11.5 Immiscible Displacement in Naturally Fractured Porous Media 396
11.6 Method of Weighted Sum (Quadrature) Numerical Solutions 410
11.7 Finite Difference Numerical Solution 415
11.8 Exercises 425
References 429
Index 455