Tadeusz Kaczorek
Positive 1D and 2D Systems (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Tadeusz Kaczorek
Positive 1D and 2D Systems (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Moving on from earlier stochastic and robust control paradigms, this book introduces the reader to the fundamentals of probabilistic methods in the analysis and design of uncertain systems. It significantly reduces the computational cost of high-quality control and the complexity of the algorithms involved.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 24.99MB
Andere Kunden interessierten sich auch für
- Issues of Fault Diagnosis for Dynamic Systems (eBook, PDF)161,95 €
- Networked Control Systems (eBook, PDF)73,95 €
- Sam C. SaundersReliability, Life Testing and the Prediction of Service Lives (eBook, PDF)113,95 €
- Modeling and Simulation Tools for Emerging Telecommunication Networks (eBook, PDF)161,95 €
- Baek-Young ChoiScalable Network Monitoring in High Speed Networks (eBook, PDF)40,95 €
- Big Data Analytics for Cyber-Physical Systems (eBook, PDF)137,95 €
- Dynamics On and Of Complex Networks (eBook, PDF)121,95 €
-
-
-
Moving on from earlier stochastic and robust control paradigms, this book introduces the reader to the fundamentals of probabilistic methods in the analysis and design of uncertain systems. It significantly reduces the computational cost of high-quality control and the complexity of the algorithms involved.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer London
- Seitenzahl: 431
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781447102212
- Artikelnr.: 44000936
- Verlag: Springer London
- Seitenzahl: 431
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781447102212
- Artikelnr.: 44000936
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Tadeusz Kaczorek, Warsaw University of Technology, Warsaw, Poland
Elements of Probability Theory
Uncertain Linear Systems and Robustness
Linear Robust Control Design
Some Limits of the Robustness Paradigm
Probabilistic Methods for Robustness
Monte Carlo Methods
Randomized Algorithms in Systems and Control
Probability Inequalities
Statistical Learning Theory and Control Design
Sequential Algorithms for Probabilistic Robust Design
Sequential Algorithms for LPV Systems
Scenario Approach for Probabilistic Robust Design
Random Number and Variate Generation
Statistical Theory of Radial Random Vectors
Vector Randomization Methods
Statistical Theory of Radial Random Matrices
Matrix Randomization Methods
Applications of Randomized Algorithms
Uncertain Linear Systems and Robustness
Linear Robust Control Design
Some Limits of the Robustness Paradigm
Probabilistic Methods for Robustness
Monte Carlo Methods
Randomized Algorithms in Systems and Control
Probability Inequalities
Statistical Learning Theory and Control Design
Sequential Algorithms for Probabilistic Robust Design
Sequential Algorithms for LPV Systems
Scenario Approach for Probabilistic Robust Design
Random Number and Variate Generation
Statistical Theory of Radial Random Vectors
Vector Randomization Methods
Statistical Theory of Radial Random Matrices
Matrix Randomization Methods
Applications of Randomized Algorithms
1. Positive matrices and graphs.- 1.1 Generalised permutation matrix, nonnegative matrix, positive and strictly positive matrices.- 1.2 Reducible and irreducible matrices.- 1.3 The Collatz - Wielandt function.- 1.4 Maximum eigenvalue of a nonnegative matrix.- 1.5 Bounds on the maximal eigenvalue and eigenvector of a positive matrix.- 1.6 Dominating positive matrices of complex matrices.- 1.7 Oscillatory and primitive matrices.- 1.8 The canonical Frobenius form of a cyclic matrix.- 1.9 Metzler matrix.- 1.10 M-matrices.- 1.11 Totally nonnegative (positive) matrices.- 1.12 Graphs of positive systems.- 1.13 Graphs of reducible, irreducible, cyclic and primitive systems.- Problems.- References.- 2. Continuous-ime and discrete-ime positive systems.- 2.1 Externally positive systems.- 2.2 Internally positive systemst.- 2.3 Compartmental systems.- 2.4 Stability of positive systems.- 2.5 Input-output stability.- 2.6 Weakly positive systems.- 2.7 Componentwise asymptotic stability and exponental stability of positive systems.- 2.8 Externally and internally positive singular systems.- 2.9 Composite positive linear systems.- 2.10 Eigenvalue assignment problem for positive linear systems.- Problems.- References.- 3. Reachability, controllability and observability of positive systems.- 3.1 discrete-time systems.- 3.2 continuous-time systems.- 3.3 Controllability of positive systems.- 3.4 Minimum energy control of positive systems.- 3.5 Reachability and controllability of weakly positive systems with state feedbacks.- 3.6 Observability of discrete-time positive systems.- 3.7 Reachability and controllability of weakly positive systems.- Problems.- References.- 4. Realisation problem of positive 1D systems.- 4.1 Basic notions and formulation of realisation problem.- 4.2 Existence andcomputation of positive realisations.- 4.3 Existence and computation of positive realisations of multi-input multi-output systems.- 4.4 Existence and computation of positive realisations of weakly positive multi-input multi-output systems.- 4.5 Positive realisations in canonical forms of singular linear.- Problems.- References.- 5. 2D models of positive linear systems.- 5.1 Internally positive Roesser model.- 5.2 Externally positive Roesser model.- 5.3 Internally positive general model.- 5.4 Externally positive general model.- 5.5 Positive Fornasini-Marchesini models and relationships between models.- 5.6 Positive models of continuous-discrete systems.- 5.7 Positive generalised Roesser model.- Problems.- References.- 6 Controllability and minimum energy control of positive 2D systems.- 6.1 Reachability, controllability and observability of positive Roesser model.- 6.2 Reachability, controllability and observability of the positive general model.- 6.3 Minimum energy control of positive 2D systems.- 6.4 Reachability and minimum energy control of positive 2D continuous-discrete systems.- Problems.- References.- 7. Realisation problem for positive 2D systems.- 7.1 Formulation of realisation problem for positive Roesser model.- 7.2 Existence of positive realisations.- 7.3 Positive realisations in canonical form of the Roesser model.- 7.4 Determination of the positive Roesser model by the use of state variables diagram.- 7.5 Determination of a positive 2D general model for a given transfer matrix.- 7.6 Positive realisation problem for singular 2D Roesser model.- 7.7 Concluding remarks and open problems.- Problems.- References.- Appendix A Oeterminantal Sylvester equality.- Appendix B Computation of fundamental matrices of linear systems.- Appendix C Solutions of 20 linear discrete models.- Appendix D Transformations of matrices to their canonical forms and lemmas for 1D singular systems.
Elements of Probability Theory
Uncertain Linear Systems and Robustness
Linear Robust Control Design
Some Limits of the Robustness Paradigm
Probabilistic Methods for Robustness
Monte Carlo Methods
Randomized Algorithms in Systems and Control
Probability Inequalities
Statistical Learning Theory and Control Design
Sequential Algorithms for Probabilistic Robust Design
Sequential Algorithms for LPV Systems
Scenario Approach for Probabilistic Robust Design
Random Number and Variate Generation
Statistical Theory of Radial Random Vectors
Vector Randomization Methods
Statistical Theory of Radial Random Matrices
Matrix Randomization Methods
Applications of Randomized Algorithms
Uncertain Linear Systems and Robustness
Linear Robust Control Design
Some Limits of the Robustness Paradigm
Probabilistic Methods for Robustness
Monte Carlo Methods
Randomized Algorithms in Systems and Control
Probability Inequalities
Statistical Learning Theory and Control Design
Sequential Algorithms for Probabilistic Robust Design
Sequential Algorithms for LPV Systems
Scenario Approach for Probabilistic Robust Design
Random Number and Variate Generation
Statistical Theory of Radial Random Vectors
Vector Randomization Methods
Statistical Theory of Radial Random Matrices
Matrix Randomization Methods
Applications of Randomized Algorithms
1. Positive matrices and graphs.- 1.1 Generalised permutation matrix, nonnegative matrix, positive and strictly positive matrices.- 1.2 Reducible and irreducible matrices.- 1.3 The Collatz - Wielandt function.- 1.4 Maximum eigenvalue of a nonnegative matrix.- 1.5 Bounds on the maximal eigenvalue and eigenvector of a positive matrix.- 1.6 Dominating positive matrices of complex matrices.- 1.7 Oscillatory and primitive matrices.- 1.8 The canonical Frobenius form of a cyclic matrix.- 1.9 Metzler matrix.- 1.10 M-matrices.- 1.11 Totally nonnegative (positive) matrices.- 1.12 Graphs of positive systems.- 1.13 Graphs of reducible, irreducible, cyclic and primitive systems.- Problems.- References.- 2. Continuous-ime and discrete-ime positive systems.- 2.1 Externally positive systems.- 2.2 Internally positive systemst.- 2.3 Compartmental systems.- 2.4 Stability of positive systems.- 2.5 Input-output stability.- 2.6 Weakly positive systems.- 2.7 Componentwise asymptotic stability and exponental stability of positive systems.- 2.8 Externally and internally positive singular systems.- 2.9 Composite positive linear systems.- 2.10 Eigenvalue assignment problem for positive linear systems.- Problems.- References.- 3. Reachability, controllability and observability of positive systems.- 3.1 discrete-time systems.- 3.2 continuous-time systems.- 3.3 Controllability of positive systems.- 3.4 Minimum energy control of positive systems.- 3.5 Reachability and controllability of weakly positive systems with state feedbacks.- 3.6 Observability of discrete-time positive systems.- 3.7 Reachability and controllability of weakly positive systems.- Problems.- References.- 4. Realisation problem of positive 1D systems.- 4.1 Basic notions and formulation of realisation problem.- 4.2 Existence andcomputation of positive realisations.- 4.3 Existence and computation of positive realisations of multi-input multi-output systems.- 4.4 Existence and computation of positive realisations of weakly positive multi-input multi-output systems.- 4.5 Positive realisations in canonical forms of singular linear.- Problems.- References.- 5. 2D models of positive linear systems.- 5.1 Internally positive Roesser model.- 5.2 Externally positive Roesser model.- 5.3 Internally positive general model.- 5.4 Externally positive general model.- 5.5 Positive Fornasini-Marchesini models and relationships between models.- 5.6 Positive models of continuous-discrete systems.- 5.7 Positive generalised Roesser model.- Problems.- References.- 6 Controllability and minimum energy control of positive 2D systems.- 6.1 Reachability, controllability and observability of positive Roesser model.- 6.2 Reachability, controllability and observability of the positive general model.- 6.3 Minimum energy control of positive 2D systems.- 6.4 Reachability and minimum energy control of positive 2D continuous-discrete systems.- Problems.- References.- 7. Realisation problem for positive 2D systems.- 7.1 Formulation of realisation problem for positive Roesser model.- 7.2 Existence of positive realisations.- 7.3 Positive realisations in canonical form of the Roesser model.- 7.4 Determination of the positive Roesser model by the use of state variables diagram.- 7.5 Determination of a positive 2D general model for a given transfer matrix.- 7.6 Positive realisation problem for singular 2D Roesser model.- 7.7 Concluding remarks and open problems.- Problems.- References.- Appendix A Oeterminantal Sylvester equality.- Appendix B Computation of fundamental matrices of linear systems.- Appendix C Solutions of 20 linear discrete models.- Appendix D Transformations of matrices to their canonical forms and lemmas for 1D singular systems.