38,95 €
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
19 °P sammeln
38,95 €
38,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
19 °P sammeln
Als Download kaufen
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
19 °P sammeln
Jetzt verschenken
38,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
19 °P sammeln
  • Format: PDF

An understanding of statistical thermodynamic molecular theory is fundamental to the appreciation of molecular solutions. This complex subject has been simplified by the authors with down-to-earth presentations of molecular theory. Using the potential distribution theorem (PDT) as the basis, the text provides a discussion of practical theories in conjunction with simulation results. The authors discuss the field in a concise and simple manner, illustrating the text with useful models of solution thermodynamics and numerous exercises. Modern quasi-chemical theories that permit statistical…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 1.9MB
  • FamilySharing(5)
Produktbeschreibung
An understanding of statistical thermodynamic molecular theory is fundamental to the appreciation of molecular solutions. This complex subject has been simplified by the authors with down-to-earth presentations of molecular theory. Using the potential distribution theorem (PDT) as the basis, the text provides a discussion of practical theories in conjunction with simulation results. The authors discuss the field in a concise and simple manner, illustrating the text with useful models of solution thermodynamics and numerous exercises. Modern quasi-chemical theories that permit statistical thermodynamic properties to be studied on the basis of electronic structure calculations are given extended development, as is the testing of those theoretical results with ab initio molecular dynamics simulations. The book is intended for students taking up research problems of molecular science in chemistry, chemical engineering, biochemistry, pharmaceutical chemistry, nanotechnology and biotechnology.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Thomas L. Beck is a Professor of Chemistry at the University of Cincinnati. His research focuses on development of quantum simualtion methods and solution phase theory and modeling.
Michael E. Paulaitis is Professor of Chemical and Biomolecular Engineering and Ohio Eminent Scholar at Ohio State University. He is also Director of the Institute of Multiscale Modeling of Biological Interactions at Johns Hopkins University. His research focuses on molecular thermodynamics of hydration, protein solution thermodynamics and molecular simulations of biological macromolecules
Lawrence R. Pratt works in the Theoretical Chemistry and Molecular Physics Group at Los Alamos National Laboratory. His research focuses on theoretical problems in chemical physics, but especially theory of molecular solutions and hydration problems in molecular biophysics.