Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 18.84MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 608
- Erscheinungstermin: 13. Dezember 2019
- Englisch
- ISBN-13: 9781119546887
- Artikelnr.: 58582499
- Verlag: John Wiley & Sons
- Seitenzahl: 608
- Erscheinungstermin: 13. Dezember 2019
- Englisch
- ISBN-13: 9781119546887
- Artikelnr.: 58582499
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Te2 Under Constant Field Voltage 272 10.3.2
Te2 With Excitation System Control 273 10.4 Power System Stabilizer Design using Rotor Speed Signal 275 10.4.1 PSS Design Requirements 276 10.4.2 PSS Control Blocks 277 10.4.3 PSS Design Methods 279 10.4.4 Torsional Filters 284 10.4.5 PSS Field Tuning 287 10.4.6 Interarea Mode Damping 287 10.5 Other PSS Input Signals 288 10.5.1 Generator Terminal Bus Frequency 288 10.5.2 Electrical Power Output
Pe 288 10.6 Integral-of-Accelerating-Power or Dual-Input PSS 289 10.7 Summary and Notes 293 Problems 293 11 Load and Induction Motor Models 295 11.1 Introduction 295 11.2 Static Load Models 296 11.2.1 Exponential Load Model 296 11.2.2 Polynomial Load Model 297 11.3 Incorporating ZIP Load Models in Dynamic Simulation and Linear Analysis 298 11.4 Induction Motors: Steady-State Models 303 11.4.1 Physical Description 304 11.4.2 Mathematical Description 304 11.4.2.1 Modeling Equations 304 11.4.2.2 Reference Frame Transformation 306 11.4.3 Equivalent Circuits 308 11.4.4 Per-Unit Representation 310 11.4.5 Torque-Slip Characteristics 311 11.4.6 Reactive Power Consumption 313 11.4.7 Motor Startup 314 11.5 Induction Motors: Dynamic Models 315 11.5.1 Initialization 318 11.5.2 Reactive Power Requirement during Motor Stalling 320 11.6 Summary and Notes 323 Problems 324 12 Turbine-Governor Models and Frequency Control 327 12.1 Introduction 327 12.2 Steam Turbines 328 12.2.1 Turbine Configurations 328 12.2.2 Steam Turbine-Governors 331 12.3 Hydraulic Turbines 333 12.3.1 Hydraulic Turbine-Governors 337 12.3.2 Load Rejection of Hydraulic Turbines 338 12.4 Gas Turbines and Co-Generation Plants 339 12.5 Primary Frequency Control 342 12.5.1 Isolated Turbine-Generator Serving Local Load 343 12.5.2 Interconnected Units 347 12.5.3 Frequency Response in US Power Grids 349 12.6 Automatic Generation Control 351 12.7 Turbine-Generator Torsional Oscillations and Subsynchronous Resonance 356 12.7.1 Torsional Modes 356 12.7.2 Electrical Network Modes 363 12.7.3 SSR Occurrence and Countermeasures 365 12.8 Summary and Notes 366 Problems 367 Part III Advanced Power System Topics 371 13 High-Voltage Direct Current Transmission Systems 373 13.1 Introduction 373 13.1.1 HVDC System Installations and Applications 375 13.1.2 HVDC System Economics 377 13.2 AC/DC and DC/AC Conversion 377 13.2.1 AC-DC Conversion using Ideal Diodes 378 13.2.2 Three-Phase Full-Wave Bridge Converter 379 13.3 Line-Commutation Operation in HVDC Systems 383 13.3.1 Rectifier Operation 383 13.3.1.1 Thyristor Ignition Delay Angle 383 13.3.1.2 Commutation Overlap 385 13.3.2 Inverter Operation 388 13.3.3 Multiple Bridge Converters 389 13.3.4 Equivalent Circuit 389 13.4 Control Modes 391 13.4.1 Mode 1: Normal Operation 392 13.4.2 Mode 2: Reduced-Voltage Operation 393 13.4.3 Mode 3: Transitional Mode 394 13.4.4 System Operation Under Fault Conditions 396 13.4.5 Communication Requirements 396 13.5 Multi-terminal HVDC Systems 397 13.6 Harmonics and Reactive Power Requirement 398 13.6.1 Harmonic Filters 398 13.6.2 Reactive Power Support 399 13.7 AC-DC Power Flow Computation 401 13.8 Dynamic Models 406 13.8.1 Converter Control 406 13.8.2 DC Line Dynamics 408 13.8.3 AC-DC Network Solution 409 13.9 Damping Control Design 411 13.10 Summary and Notes 416 Problems 416 14 Flexible AC Transmission Systems 421 14.1 Introduction 421 14.2 Static Var Compensator 422 14.2.1 Circuit Configuration and Thyristor Switching 422 14.2.2 Steady-State Voltage Regulation and Stability Enhancement 423 14.2.2.1 Voltage Stability Enhancement 424 14.2.2.2 Transient Stability Enhancement 427 14.2.3 Dynamic Voltage Control and Droop Regulation 429 14.2.4 Dynamic Simulation 433 14.2.5 Damping Control Design using SVC 435 14.3 Thyristor-Controlled Series Compensator 441 14.3.1 Fixed Series Compensation 442 14.3.2 TCSC Circuit Configuration and Switching 442 14.3.3 Voltage Reversal Control 444 14.3.4 Mitigation of Subsynchronous Oscillations 445 14.3.5 Dynamic Model and Damping Control Design 446 14.4 Shunt VSC Controllers 451 14.4.1 Voltage-Sourced Converters 451 14.4.1.1 Three-Phase Full-Wave VSCs 453 14.4.1.2 Three-Level Converters 455 14.4.1.3 Harmonics 455 14.4.2 Static Compensator 458 14.4.2.1 Steady-State Analysis 458 14.4.2.2 Dynamic Model 459 14.4.3 VSC HVDC Systems 463 14.4.3.1 Steady-State Operation 463 14.4.3.2 Dynamic Model 466 14.5 Series and Coupled VSC Controllers 469 14.5.1 Static Synchronous Series Compensation 469 14.5.1.1 Steady-State Analysis 469 14.5.2 Unified Power Flow Controller 471 14.5.2.1 Steady-State Analysis 471 14.5.3 Interline Power Flow Controller 475 14.5.3.1 Steady-State Analysis 475 14.5.4 Dynamic Model 478 14.5.4.1 Series Voltage Insertion 479 14.5.4.2 Line Active and Reactive Power Flow Control 480 14.6 Summary and Notes 480 Problems 481 15 Wind Power Generation and Modeling 487 15.1 Background 487 15.2 Wind Turbine Components 489 15.3 Wind Power 491 15.3.1 Blade Angle Orientation 492 15.3.2 Power Coefficient 494 15.4 Wind Turbine Types 496 15.4.1 Type 1 496 15.4.2 Type 2 497 15.4.3 Type 3 498 15.4.4 Type 4 498 15.5 Steady-State Characteristics 499 15.5.1 Type-1Wind Turbine 499 15.5.2 Type-2Wind Turbine 501 15.5.3 Type-3Wind Turbine 502 15.6 Wind Power Plant Representation 505 15.7 Overall Control Criteria for Variable-Speed Wind Turbines 510 15.8 Wind Turbine Model for Transient Stability Planning Studies 513 15.8.1 Overall Model Structure 513 15.8.2 Generator/Converter Model 514 15.8.3 Electrical Control Model 515 15.8.4 Drive-Train Model 517 15.8.5 Torque Control Model 519 15.8.6 Aerodynamic Model 520 15.8.7 Pitch Controller 522 15.9 Plant-Level Control Model 526 15.9.1 Simulation Example 526 15.10 Summary and Notes 527 Problems 528 16 Power System Coherency and Model Reduction 531 16.1 Introduction 531 16.2 Interarea Oscillations and Slow Coherency 532 16.2.1 Slow Coherency 534 16.2.2 Slow Coherent Areas 536 16.2.3 Finding Coherent Groups of Machines 541 16.3 Generator Aggregation and Network Reduction 544 16.3.1 Generator Aggregation 545 16.3.2 Dynamic Aggregation 548 16.3.3 Load Bus Elimination 551 16.4 Simulation Studies 555 16.4.1 Singular Perturbations Method 556 16.5 Linear Reduced Model Methods 557 16.5.1 Modal Truncation 558 16.5.2 Balanced Model Reduction Method 559 16.6 Dynamic Model Reduction Software 559 16.7 Summary and Notes 560 Problems 560 References 563 Index 577
Te2 Under Constant Field Voltage 272 10.3.2
Te2 With Excitation System Control 273 10.4 Power System Stabilizer Design using Rotor Speed Signal 275 10.4.1 PSS Design Requirements 276 10.4.2 PSS Control Blocks 277 10.4.3 PSS Design Methods 279 10.4.4 Torsional Filters 284 10.4.5 PSS Field Tuning 287 10.4.6 Interarea Mode Damping 287 10.5 Other PSS Input Signals 288 10.5.1 Generator Terminal Bus Frequency 288 10.5.2 Electrical Power Output
Pe 288 10.6 Integral-of-Accelerating-Power or Dual-Input PSS 289 10.7 Summary and Notes 293 Problems 293 11 Load and Induction Motor Models 295 11.1 Introduction 295 11.2 Static Load Models 296 11.2.1 Exponential Load Model 296 11.2.2 Polynomial Load Model 297 11.3 Incorporating ZIP Load Models in Dynamic Simulation and Linear Analysis 298 11.4 Induction Motors: Steady-State Models 303 11.4.1 Physical Description 304 11.4.2 Mathematical Description 304 11.4.2.1 Modeling Equations 304 11.4.2.2 Reference Frame Transformation 306 11.4.3 Equivalent Circuits 308 11.4.4 Per-Unit Representation 310 11.4.5 Torque-Slip Characteristics 311 11.4.6 Reactive Power Consumption 313 11.4.7 Motor Startup 314 11.5 Induction Motors: Dynamic Models 315 11.5.1 Initialization 318 11.5.2 Reactive Power Requirement during Motor Stalling 320 11.6 Summary and Notes 323 Problems 324 12 Turbine-Governor Models and Frequency Control 327 12.1 Introduction 327 12.2 Steam Turbines 328 12.2.1 Turbine Configurations 328 12.2.2 Steam Turbine-Governors 331 12.3 Hydraulic Turbines 333 12.3.1 Hydraulic Turbine-Governors 337 12.3.2 Load Rejection of Hydraulic Turbines 338 12.4 Gas Turbines and Co-Generation Plants 339 12.5 Primary Frequency Control 342 12.5.1 Isolated Turbine-Generator Serving Local Load 343 12.5.2 Interconnected Units 347 12.5.3 Frequency Response in US Power Grids 349 12.6 Automatic Generation Control 351 12.7 Turbine-Generator Torsional Oscillations and Subsynchronous Resonance 356 12.7.1 Torsional Modes 356 12.7.2 Electrical Network Modes 363 12.7.3 SSR Occurrence and Countermeasures 365 12.8 Summary and Notes 366 Problems 367 Part III Advanced Power System Topics 371 13 High-Voltage Direct Current Transmission Systems 373 13.1 Introduction 373 13.1.1 HVDC System Installations and Applications 375 13.1.2 HVDC System Economics 377 13.2 AC/DC and DC/AC Conversion 377 13.2.1 AC-DC Conversion using Ideal Diodes 378 13.2.2 Three-Phase Full-Wave Bridge Converter 379 13.3 Line-Commutation Operation in HVDC Systems 383 13.3.1 Rectifier Operation 383 13.3.1.1 Thyristor Ignition Delay Angle 383 13.3.1.2 Commutation Overlap 385 13.3.2 Inverter Operation 388 13.3.3 Multiple Bridge Converters 389 13.3.4 Equivalent Circuit 389 13.4 Control Modes 391 13.4.1 Mode 1: Normal Operation 392 13.4.2 Mode 2: Reduced-Voltage Operation 393 13.4.3 Mode 3: Transitional Mode 394 13.4.4 System Operation Under Fault Conditions 396 13.4.5 Communication Requirements 396 13.5 Multi-terminal HVDC Systems 397 13.6 Harmonics and Reactive Power Requirement 398 13.6.1 Harmonic Filters 398 13.6.2 Reactive Power Support 399 13.7 AC-DC Power Flow Computation 401 13.8 Dynamic Models 406 13.8.1 Converter Control 406 13.8.2 DC Line Dynamics 408 13.8.3 AC-DC Network Solution 409 13.9 Damping Control Design 411 13.10 Summary and Notes 416 Problems 416 14 Flexible AC Transmission Systems 421 14.1 Introduction 421 14.2 Static Var Compensator 422 14.2.1 Circuit Configuration and Thyristor Switching 422 14.2.2 Steady-State Voltage Regulation and Stability Enhancement 423 14.2.2.1 Voltage Stability Enhancement 424 14.2.2.2 Transient Stability Enhancement 427 14.2.3 Dynamic Voltage Control and Droop Regulation 429 14.2.4 Dynamic Simulation 433 14.2.5 Damping Control Design using SVC 435 14.3 Thyristor-Controlled Series Compensator 441 14.3.1 Fixed Series Compensation 442 14.3.2 TCSC Circuit Configuration and Switching 442 14.3.3 Voltage Reversal Control 444 14.3.4 Mitigation of Subsynchronous Oscillations 445 14.3.5 Dynamic Model and Damping Control Design 446 14.4 Shunt VSC Controllers 451 14.4.1 Voltage-Sourced Converters 451 14.4.1.1 Three-Phase Full-Wave VSCs 453 14.4.1.2 Three-Level Converters 455 14.4.1.3 Harmonics 455 14.4.2 Static Compensator 458 14.4.2.1 Steady-State Analysis 458 14.4.2.2 Dynamic Model 459 14.4.3 VSC HVDC Systems 463 14.4.3.1 Steady-State Operation 463 14.4.3.2 Dynamic Model 466 14.5 Series and Coupled VSC Controllers 469 14.5.1 Static Synchronous Series Compensation 469 14.5.1.1 Steady-State Analysis 469 14.5.2 Unified Power Flow Controller 471 14.5.2.1 Steady-State Analysis 471 14.5.3 Interline Power Flow Controller 475 14.5.3.1 Steady-State Analysis 475 14.5.4 Dynamic Model 478 14.5.4.1 Series Voltage Insertion 479 14.5.4.2 Line Active and Reactive Power Flow Control 480 14.6 Summary and Notes 480 Problems 481 15 Wind Power Generation and Modeling 487 15.1 Background 487 15.2 Wind Turbine Components 489 15.3 Wind Power 491 15.3.1 Blade Angle Orientation 492 15.3.2 Power Coefficient 494 15.4 Wind Turbine Types 496 15.4.1 Type 1 496 15.4.2 Type 2 497 15.4.3 Type 3 498 15.4.4 Type 4 498 15.5 Steady-State Characteristics 499 15.5.1 Type-1Wind Turbine 499 15.5.2 Type-2Wind Turbine 501 15.5.3 Type-3Wind Turbine 502 15.6 Wind Power Plant Representation 505 15.7 Overall Control Criteria for Variable-Speed Wind Turbines 510 15.8 Wind Turbine Model for Transient Stability Planning Studies 513 15.8.1 Overall Model Structure 513 15.8.2 Generator/Converter Model 514 15.8.3 Electrical Control Model 515 15.8.4 Drive-Train Model 517 15.8.5 Torque Control Model 519 15.8.6 Aerodynamic Model 520 15.8.7 Pitch Controller 522 15.9 Plant-Level Control Model 526 15.9.1 Simulation Example 526 15.10 Summary and Notes 527 Problems 528 16 Power System Coherency and Model Reduction 531 16.1 Introduction 531 16.2 Interarea Oscillations and Slow Coherency 532 16.2.1 Slow Coherency 534 16.2.2 Slow Coherent Areas 536 16.2.3 Finding Coherent Groups of Machines 541 16.3 Generator Aggregation and Network Reduction 544 16.3.1 Generator Aggregation 545 16.3.2 Dynamic Aggregation 548 16.3.3 Load Bus Elimination 551 16.4 Simulation Studies 555 16.4.1 Singular Perturbations Method 556 16.5 Linear Reduced Model Methods 557 16.5.1 Modal Truncation 558 16.5.2 Balanced Model Reduction Method 559 16.6 Dynamic Model Reduction Software 559 16.7 Summary and Notes 560 Problems 560 References 563 Index 577