11,95 €
11,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
6 °P sammeln
11,95 €
11,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
6 °P sammeln
Als Download kaufen
11,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
6 °P sammeln
Jetzt verschenken
11,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
6 °P sammeln
  • Format: ePub

Guide covering topics from machine learning, regression models, neural network to tensor flow Key features Machine learning in MATLAB using basic concepts and algorithms. Deriving and accessing of data in MATLAB and next, pre-processing and preparation of data. Machine learning workflow for health monitoring. The neural network domain and implementation in MATLAB with explicit explanation of code and results. How predictive model can be improved using MATLAB? MATLAB code for an algorithm implementation, rather than for mathematical formula. Machine learning workflow for health monitoring.…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 10.99MB
  • FamilySharing(5)
Produktbeschreibung
Guide covering topics from machine learning, regression models, neural network to tensor flow Key features Machine learning in MATLAB using basic concepts and algorithms. Deriving and accessing of data in MATLAB and next, pre-processing and preparation of data. Machine learning workflow for health monitoring. The neural network domain and implementation in MATLAB with explicit explanation of code and results. How predictive model can be improved using MATLAB? MATLAB code for an algorithm implementation, rather than for mathematical formula. Machine learning workflow for health monitoring. Description Machine learning is mostly sought in the research field and has become an integral part of many research projects nowadays including commercial applications, as well as academic research. Application of machine learning ranges from finding friends on social networking sites to medical diagnosis and even satellite processing. In this book, we have made an honest effort to make the concepts of machine learning easy and give basic programs in MATLAB right from the installation part. Although the real-time application of machine learning is endless, however, the basic concepts and algorithms are discussed using MATLAB language so that not only graduation students but also researchers are benefitted from it.What will you learn Pre-requisites to machine learning Finding natural patterns in data Building classification methods Data pre-processing in Python Building regression models Creating neural networks Deep learning Who this book is forThe book is basically meant for graduate and research students who find the algorithms of machine learning difficult to implement. We have touched all basic algorithms of machine learning in detail with a practical approach. Primarily, beginners will find this book more effective as the chapters are subdivided in a manner that they find the building and implementation of algorithms in MATLAB interesting and easy at the same time.Table of contents1. Pre-requisite to Machine Learning2. An introduction to Machine Learning3. Finding Natural Patterns in Data4. Building Classification Methods5. Data Pre-Processing in Python6. Building Regression Models7. Creating Neural Networks8. Introduction to Deep LearningAbout the authorAbhishek Kumar Pandey is pursuing his Doctorate in computer science and done M.Tech in Computer Sci. & Engineering. He has been working as an Assistant professor of Computer Science at Aryabhatt Engineering College and Research center, Ajmer and also visiting faculty in Government University MDS Ajmer. He has total Academic teaching experience of more than eight years with more than 50 publications in reputed National and International Journals. His research area includes- Artificial intelligence, Image processing, Computer Vision, Data Mining, Machine Learning. His Blog: http://veenapandey.simplesite.com/His LinkedIn Profile: https://www.linkedin.com/in/abhishek-pandey-ba6a6a64/ Pramod Singh Rathore is M. Tech in Computer Sci. and Engineering from Government Engineering College Ajmer, Rajasthan Technical University, Kota, India. He have been working as an Assistant Professor Computer Science at Aryabhatt Engineering College and Research center, Ajmer and also a visiting faculty in Government University Ajmer. He has authored a book in Network simulation which published worldwide. He has a total academic teaching experience more than 7 years with many publications in reputed national group, CRC USA, and has 40 publications as Research papers and Chapters in reputed National and International E-SCI SCOPUS. His research area includes machine learning, NS2, Computer Network, Mining, and DBMS. Dr S. Balamurugan is the Head of Research and Development, Quants IS & CS, India. Formely, he was the Director of Research and Development at Mindnotix Technologies, India. He has authored/co-authored 33 books and has 200 publications in various international journals and conferences to his credit. He was awarded with Three Post-Doctoral Degrees- Doctor of Science (D.Sc.) degree and Two Doctor of Letters(D.Litt) degrees for his significant contribution to research and development in Engineering, and is the recepient of thee Best Director Award, 2018. His biography is listed in "e;World Book of Researchers"e; 2018, Oxford, UK and in "e;Marquis WHO'S WHO"e; 2018 issue, New Jersey, USA. He carried out a healthcare consultancy project for VGM Hospitals between 2013 and 2016, and his current research projects include "e;Women Empowerment using IoT"e;, "e;Health-Aware Smart Chair"e;, "e;Advanced Brain Simulators for Assisting Physiological Medicine"e;, "e;Designing Novel Health Bands"e; and "e;IoT -based Devices for Assisting Elderly People"e;. His LinkedIn Profile: https://www.linkedin.com/in/dr-s-balamurugan-008a7512

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.