37,95 €
37,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
19 °P sammeln
37,95 €
37,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
19 °P sammeln
Als Download kaufen
37,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
19 °P sammeln
Jetzt verschenken
37,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
19 °P sammeln
  • Format: PDF

Develop smart applications without spending days and weeks building machine-learning models. With this practical book, youll learn how to apply automated machine learning (AutoML), a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology.Building machine-learning models is an iterative and time-consuming process. Even those who know how to create ML models may be limited in…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 15.95MB
  • FamilySharing(5)
Produktbeschreibung
Develop smart applications without spending days and weeks building machine-learning models. With this practical book, youll learn how to apply automated machine learning (AutoML), a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology.Building machine-learning models is an iterative and time-consuming process. Even those who know how to create ML models may be limited in how much they can explore. Once you complete this book, youll understand how to apply AutoML to your data right away.Learn how companies in different industries are benefiting from AutoMLGet started with AutoML using AzureExplore aspects such as algorithm selection, auto featurization, and hyperparameter tuningUnderstand how data analysts, BI professions, developers can use AutoML in their familiar tools and experiencesLearn how to get started using AutoML for use cases including classification, regression, and forecasting.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Deepak Mukunthu is a product leader with more than 16 years of experience. With his experience in big data, analytics, and AI, Deepak has played instrumental leadership roles in helping organizations and teams become data-driven and to adopt machine learning. He brings a good mix of thought leadership, customer understanding, and innovation to design and deliver compelling products that resonate well with customers. In his current role of principal program manager of the automated ML in Azure AI platform group at Microsoft, Deepak drives product strategy and roadmap for Automated ML with the goal of accelerating AI for data scientists and democratizing AI for other personas interested in machine learning. In addition to shaping the product direction, he also plays an instrumental role in helping customers adopt Automated ML for their business-critical scenarios. Prior to joining Microsoft, Deepak worked at Trilogy where he played multiple roles-consultant, business development, program manager, engineering manager-successfully leading distributed teams across the globe and managing technical integration of acquisitions. Parashar Shah is a senior program/product manager on the Azure AI engineering team at Microsoft, leading big data and deep learning projects to help increase adoption of AI in enterprises especially automated ML with Spark. At Microsoft and at Alcatel-Lucent/Bell Labs prior to that, his contributions increased global adoption of AI/analytics platform contributing to customers' growth in retail, manufacturing, telco, and oil and gas verticals. Parashar has an MBA from the Indian Institute of Management Bangalore and a B.E. (E.C.) from Nirma Institute of Technology, Ahmedabad. He also cofounded a carpool startup in India. He has also coauthored Hands-On Machine Learning with Azure: Build Powerful Models with Cognitive Machine Learning and Artificial Intelligence (Packt), published in November 2018. He has filed for five patents. He has presented at multiple Microsoft and external conferences, including Spark summit and KDD. His interests span the subjects of photography, AI, machine learning, automated ML, big data, and the internet of things (IoT). Wee Hyong Tok is part of the AzureCAT team at Microsoft. He has extensive leadership experience leading multidisciplinary team of engineers and data scientists, working on cutting-edge AI capabilities that are infused into products and services. He is a tech visionary with a background in product management, machine learning/deep learning and working on complex engagements with customers. Over the years, he has demonstrated that his early thought leadership whitepapers on tech trends have become reality, and deeply integrated into many products. His ability to strategize, and turn strategy to execution, and hunting for customer adoption has enabled many projects that he works on to be successful. He is continuously pushing the boundaries of products for machine learning and deep learning. His team works extensively with deep learning frameworks, ranging from TensorFlow, CNTK, Keras, and PyTorch. Wee Hyong has worn many hats in his career-developer, program/product manager, data scientist, researcher, and strategist-and his range of experience has given him unique superpowers to lead and define the strategy for high-performing data and AI innovation teams. Throughout his career, he has been a trusted advisor to the C-suite, from Fortune 500 companies to startups.