Abdelmonem Afifi, Susanne May, Robin Donatello, Virginia A. Clark
Practical Multivariate Analysis (eBook, ePUB)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Abdelmonem Afifi, Susanne May, Robin Donatello, Virginia A. Clark
Practical Multivariate Analysis (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This is the sixth edition of a popular textbook on multivariate analysis. Well-regarded for its practical and accessible approach, with excellent examples and good guidance on computing, the book is particularly popular for teaching outside statistics, i.e. in epidemiology, social science, business, etc.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 8.87MB
Andere Kunden interessierten sich auch für
- Abdelmonem AfifiPractical Multivariate Analysis (eBook, PDF)48,95 €
- Kimmo VehkalahtiMultivariate Analysis for the Behavioral Sciences, Second Edition (eBook, ePUB)50,95 €
- Kimmo VehkalahtiMultivariate Analysis for the Behavioral Sciences, Second Edition (eBook, PDF)50,95 €
- Wan TangApplied Categorical and Count Data Analysis (eBook, ePUB)80,95 €
- Annette J. DobsonAn Introduction to Generalized Linear Models (eBook, ePUB)75,95 €
- John FoxUsing the R Commander (eBook, ePUB)61,95 €
- Jocelyn E. BolinRegression Analysis in R (eBook, ePUB)62,95 €
-
-
-
This is the sixth edition of a popular textbook on multivariate analysis. Well-regarded for its practical and accessible approach, with excellent examples and good guidance on computing, the book is particularly popular for teaching outside statistics, i.e. in epidemiology, social science, business, etc.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 434
- Erscheinungstermin: 16. Oktober 2019
- Englisch
- ISBN-13: 9781351788908
- Artikelnr.: 57922746
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 434
- Erscheinungstermin: 16. Oktober 2019
- Englisch
- ISBN-13: 9781351788908
- Artikelnr.: 57922746
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Abdelmonem Afifi, Ph.D., has been Professor of Biostatistics in the School of Public Health, University of California, Los Angeles (UCLA) since 1965, and served as the Dean of the School from 1985 until 2000. His research includes multivariate and multilevel data analysis, handling missing observations in regression and discriminant analyses, meta-analysis, and model selection. Over the years, he taught well-attended courses in biostatistics for Public Health students and clinical research physicians, and doctoral-level courses in multivariate statistics and multilevel modeling. He has authored many publications in statistics and health related fields, including two widely used books (with multiple editions) on multivariate analysis. He received several prestigious awards for excellence in teaching and research.
Susanne May, Ph.D., is a Professor in the Department of Biostatistics at the University of Washington in Seattle. Her areas of expertise and interest include clinical trials, survival analysis, and longitudinal data analysis. She has more than 20 years of experience as a statistical collaborator and consultant on health related research projects. In addition to a number of methodological and applied publications, she is a coauthor (with Drs. Hosmer and Lemeshow) of Applied Survival Analysis: Regression Modeling of Time-to-Event Data. Dr. May has taught courses on introductory statistics, clinical trials, and survival analysis.
Robin A. Donatello, Dr. P.H., is an Associate Professor in the Department of Mathematics and Statistics and the Developer of the Data Science Initiative at California State University, Chico. Her areas of interest include applied research in the Public Health and Natural Science fields. She has expertise in data visualization, techniques to address missing and erroneous data, implementing reproducible research workflows, computational statistics and Data Science. Dr. Donatello teaches undergraduate and graduate level courses in statistical programming, applied statistics, and data science.
Virginia A. Clark, Ph. D., was professor emerita of Biostatistics and Biomathematics at UCLA. For 27 years, she taught courses in multivariate analysis and survival analysis, among others. In addition to this book, she is coauthor of four books on survival analysis, linear models and analysis of variance, and survey research as well as an introductory book on biostatistics. She published extensively in statistical and health science journals.
Susanne May, Ph.D., is a Professor in the Department of Biostatistics at the University of Washington in Seattle. Her areas of expertise and interest include clinical trials, survival analysis, and longitudinal data analysis. She has more than 20 years of experience as a statistical collaborator and consultant on health related research projects. In addition to a number of methodological and applied publications, she is a coauthor (with Drs. Hosmer and Lemeshow) of Applied Survival Analysis: Regression Modeling of Time-to-Event Data. Dr. May has taught courses on introductory statistics, clinical trials, and survival analysis.
Robin A. Donatello, Dr. P.H., is an Associate Professor in the Department of Mathematics and Statistics and the Developer of the Data Science Initiative at California State University, Chico. Her areas of interest include applied research in the Public Health and Natural Science fields. She has expertise in data visualization, techniques to address missing and erroneous data, implementing reproducible research workflows, computational statistics and Data Science. Dr. Donatello teaches undergraduate and graduate level courses in statistical programming, applied statistics, and data science.
Virginia A. Clark, Ph. D., was professor emerita of Biostatistics and Biomathematics at UCLA. For 27 years, she taught courses in multivariate analysis and survival analysis, among others. In addition to this book, she is coauthor of four books on survival analysis, linear models and analysis of variance, and survey research as well as an introductory book on biostatistics. She published extensively in statistical and health science journals.
Part I: Preparation for Analysis. What is Multivariate Analysis?
Characterizing Data for Analysis. Preparing for Data Analysis. Data
Visualization. Data Screening and Transformations. Data Visualization.
Selecting Appropriate Analyses. Part II: Regression Analysis. Simple
Regression and Correlation. Multiple Regression and Correlation. Variable
Selection in Regression. Special Regression Topics. Discriminant analysis.
Logistic Regression. Regression Analysis with Survival Data. Principal
Components Analysis. Factor Analysis. Cluster Analysis. Log-Linear
Analysis. Correlated Outcomes Regression.
Characterizing Data for Analysis. Preparing for Data Analysis. Data
Visualization. Data Screening and Transformations. Data Visualization.
Selecting Appropriate Analyses. Part II: Regression Analysis. Simple
Regression and Correlation. Multiple Regression and Correlation. Variable
Selection in Regression. Special Regression Topics. Discriminant analysis.
Logistic Regression. Regression Analysis with Survival Data. Principal
Components Analysis. Factor Analysis. Cluster Analysis. Log-Linear
Analysis. Correlated Outcomes Regression.
Part I: Preparation for Analysis. What is Multivariate Analysis?
Characterizing Data for Analysis. Preparing for Data Analysis. Data
Visualization. Data Screening and Transformations. Data Visualization.
Selecting Appropriate Analyses. Part II: Regression Analysis. Simple
Regression and Correlation. Multiple Regression and Correlation. Variable
Selection in Regression. Special Regression Topics. Discriminant analysis.
Logistic Regression. Regression Analysis with Survival Data. Principal
Components Analysis. Factor Analysis. Cluster Analysis. Log-Linear
Analysis. Correlated Outcomes Regression.
Characterizing Data for Analysis. Preparing for Data Analysis. Data
Visualization. Data Screening and Transformations. Data Visualization.
Selecting Appropriate Analyses. Part II: Regression Analysis. Simple
Regression and Correlation. Multiple Regression and Correlation. Variable
Selection in Regression. Special Regression Topics. Discriminant analysis.
Logistic Regression. Regression Analysis with Survival Data. Principal
Components Analysis. Factor Analysis. Cluster Analysis. Log-Linear
Analysis. Correlated Outcomes Regression.