Practical RF System Design (eBook, PDF)
Alle Infos zum eBook verschenken
Practical RF System Design (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 2.83MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 416
- Erscheinungstermin: 1. März 2004
- Englisch
- ISBN-13: 9780471654087
- Artikelnr.: 37301966
- Verlag: John Wiley & Sons
- Seitenzahl: 416
- Erscheinungstermin: 1. März 2004
- Englisch
- ISBN-13: 9780471654087
- Artikelnr.: 37301966
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Hybrid 150 6.1.2 180
Hybrid 152 6.1.3 Simple Push-Pull 154 6.1.4 Gain 155 6.1.5 Noise Figure 156 6.1.6 Combiner Trees 156 6.1.7 Cascade Analysis of a Combiner Tree 157 6.2 Feedback 158 6.3 Feedforward 159 6.3.1 Intermods and Harmonics 160 6.3.2 Bandwidth 161 6.3.3 Noise Figure 161 6.4 Nonideal Performance 162 6.5 Summary 163 Endnotes 163 7 Frequency Conversion 165 7.1 Basics 165 7.1.1 The Mixer 165 7.1.2 Conversion in Receivers 167 7.1.3 Spurs 168 7.1.4 Conversion in Synthesizers and Exciters 170 7.1.5 Calculators 170 7.1.6 Design Methods 170 7.1.7 Example 171 7.2 Spurious Levels 171 7.2.1 Dependence on Signal Strength 171 7.2.2 Estimating Levels 173 7.2.3 Strategy for Using Levels 175 7.3 Two-Signal IMs 176 7.4 Power Range for Predictable Levels 177 7.5 Spur Plot, LO Reference 180 7.5.1 Spreadsheet Plot Description 180 7.5.2 Example of a Band Conversion 182 7.5.3 Other Information on the Plot 184 7.6 Spur Plot, IF Reference 186 7.7 Shape Factors 196 7.7.1 Definitions 197 7.7.2 RF Filter Requirements 197 7.7.3 IF Filter Requirements 200 7.8 Double Conversion 202 7.9 Operating Regions 203 7.9.1 Advantageous Regions 203 7.9.2 Limitation on Downconversion, Two-by-Twos 206 7.9.3 Higher Values of m 209 7.10 Examples 211 7.11 Note on Spur Plots Used in This Chapter 216 7.12 Summary 216 Endnotes 217 8 Contaminating Signals In Severe Nonlinearities 219 8.1 Decomposition 220 8.2 Hard Limiting 223 8.3 Soft Limiting 223 8.4 Mixers, Through the LO Port 225 8.4.1 AM Suppression 225 8.4.2 FM Transfer 226 8.4.3 Single-Sideband Transfer 226 8.4.4 Mixing Between LO Components 228 8.4.5 Troublesome Frequency Ranges in the LO 228 8.4.6 Summary of Ranges 235 8.4.7 Effect on Noise Figure 236 8.5 Frequency Dividers 240 8.5.1 Sideband Reduction 240 8.5.2 Sampling 241 8.5.3 Internal Noise 242 8.6 Frequency Multipliers 242 8.7 Summary 243 Endnotes 244 9 Phase Noise 245 9.1 Describing Phase Noise 245 9.2 Adverse Effects of Phase Noise 247 9.2.1 Data Errors 247 9.2.2 Jitter 248 9.2.3 Receiver Desensitization 249 9.3 Sources of Phase Noise 250 9.3.1 Oscillator Phase Noise Spectrums 250 9.3.2 Integration Limits 252 9.3.3 Relationship Between Oscillator S
and L
252 9.4 Processing Phase Noise in a Cascade 252 9.4.1 Filtering by Phase-Locked Loops 253 9.4.2 Filtering by Ordinary Filters 254 9.4.3 Implication of Noise Figure 255 9.4.4 Transfer from Local Oscillators 255 9.4.5 Transfer from Data Clocks 256 9.4.6 Integration of Phase Noise 258 9.5 Determining the Effect on Data 258 9.5.1 Error Probability 258 9.5.2 Computing Phase Variance, Limits of Integration 259 9.5.3 Effect of the Carrier-Recovery Loop on Phase Noise 260 9.5.4 Effect of the Loop on Additive Noise 262 9.5.5 Contribution of Phase Noise to Data Errors 263 9.5.6 Effects of the Low-Frequency Phase Noise 268 9.6 Other Measures of Phase Noise 269 9.6.1 Jitter 269 9.6.2 Allan Variance 271 9.7 Summary 271 Endnote 272 Appendix A OP AMP Noise Factor Calculations 273 A.1 Invariance When Input Resistor Is Redistributed 273 A.2 Effect of Change in Source Resistances 274 A.3 Model 276 Appendix B Representations of Frequency Bands, If Normalization 279 B.1 Passbands 279 B.2 Acceptance Bands 279 B.3 Filter Asymmetry 286 Appendix C Conversion Arithmetic 289 C.1 Receiver Calculator 289 C.2 Synthesis Calculator 291 Appendix E Example of Frequency Conversion 293 Appendix F Some Relevant Formulas 303 F.1 Decibels 303 F.2 Reflection Coefficient and SWR 304 F.3 Combining SWRs 306 F.3.1 Summary of Results 306 F.3.2 Development 307 F.3.3 Maximum SWR 308 F.3.4 Minimum SWR 309 F.3.5 Relaxing Restrictions 309 F.4 Impedance Transformations in Cables 310 F.5 Smith Chart 310 Appendix G Types of Power Gain 313 G.1 Available Gain 313 G.2 Maximum Available Gain 313 G.3 Transducer Gain 314 G.4 Insertion Gain 315 G.5 Actual Gain 315 Appendix H Formulas Relating to IMs and Harmonics 317 H.1 Second Harmonics 317 H.2 Second-Order IMs 318 H.3 Third Harmonics 318 H.4 Third-Order IMs 319 H.5 Definitions of Terms 320 Appendix I Changing the Standard Impedance 321 I.1 General Case 321 I.2 Unilateral Module 323 Appendix L Power Delivered to the Load 325 Appendix M Matrix Multiplication 327 Appendix N Noise Factors-Standard and Theoretical 329 N.1 Theoretical Noise Factor 329 N.2 Standard Noise Factor 331 N.3 Standard Modules and Standard Noise Factor 332 N.4 Module Noise Factor in a Standard Cascade 333 N.5 How Can This Be? 334 N.6 Noise Factor of an Interconnect 334 N.6.1 Noise Factor with Mismatch 335 N.6.2 In More Usable Terms 336 N.6.3 Verification 338 N.6.4 Comparison with Theoretical Value 340 N.7 Effect of Source Impedance 341 N.8 Ratio of Power Gains 342 Endnote 343 Appendix P IM Products In Mixers 345 Appendix S Composite S Parameters 349 Appendix T Third-Order Terms at Input Frequency 353 Appendix V Sensitivities and Variance of Noise Figure 355 Appendix X Crossover Spurs 359 Appendix Z Nonstandard Modules 363 Z.1 Gain of Cascade of Modules Relative to Tested Gain 363 Z.2 Finding Maximum Available Gain of a Module 366 Z.3 Interconnects 367 Z.4 Equivalent S Parameters 367 Z.5 S Parameters for Cascade of Nonstandard Modules 368 Endnote 369 References 371 Endnote 377 Index 379
Hybrid 150 6.1.2 180
Hybrid 152 6.1.3 Simple Push-Pull 154 6.1.4 Gain 155 6.1.5 Noise Figure 156 6.1.6 Combiner Trees 156 6.1.7 Cascade Analysis of a Combiner Tree 157 6.2 Feedback 158 6.3 Feedforward 159 6.3.1 Intermods and Harmonics 160 6.3.2 Bandwidth 161 6.3.3 Noise Figure 161 6.4 Nonideal Performance 162 6.5 Summary 163 Endnotes 163 7 Frequency Conversion 165 7.1 Basics 165 7.1.1 The Mixer 165 7.1.2 Conversion in Receivers 167 7.1.3 Spurs 168 7.1.4 Conversion in Synthesizers and Exciters 170 7.1.5 Calculators 170 7.1.6 Design Methods 170 7.1.7 Example 171 7.2 Spurious Levels 171 7.2.1 Dependence on Signal Strength 171 7.2.2 Estimating Levels 173 7.2.3 Strategy for Using Levels 175 7.3 Two-Signal IMs 176 7.4 Power Range for Predictable Levels 177 7.5 Spur Plot, LO Reference 180 7.5.1 Spreadsheet Plot Description 180 7.5.2 Example of a Band Conversion 182 7.5.3 Other Information on the Plot 184 7.6 Spur Plot, IF Reference 186 7.7 Shape Factors 196 7.7.1 Definitions 197 7.7.2 RF Filter Requirements 197 7.7.3 IF Filter Requirements 200 7.8 Double Conversion 202 7.9 Operating Regions 203 7.9.1 Advantageous Regions 203 7.9.2 Limitation on Downconversion, Two-by-Twos 206 7.9.3 Higher Values of m 209 7.10 Examples 211 7.11 Note on Spur Plots Used in This Chapter 216 7.12 Summary 216 Endnotes 217 8 Contaminating Signals In Severe Nonlinearities 219 8.1 Decomposition 220 8.2 Hard Limiting 223 8.3 Soft Limiting 223 8.4 Mixers, Through the LO Port 225 8.4.1 AM Suppression 225 8.4.2 FM Transfer 226 8.4.3 Single-Sideband Transfer 226 8.4.4 Mixing Between LO Components 228 8.4.5 Troublesome Frequency Ranges in the LO 228 8.4.6 Summary of Ranges 235 8.4.7 Effect on Noise Figure 236 8.5 Frequency Dividers 240 8.5.1 Sideband Reduction 240 8.5.2 Sampling 241 8.5.3 Internal Noise 242 8.6 Frequency Multipliers 242 8.7 Summary 243 Endnotes 244 9 Phase Noise 245 9.1 Describing Phase Noise 245 9.2 Adverse Effects of Phase Noise 247 9.2.1 Data Errors 247 9.2.2 Jitter 248 9.2.3 Receiver Desensitization 249 9.3 Sources of Phase Noise 250 9.3.1 Oscillator Phase Noise Spectrums 250 9.3.2 Integration Limits 252 9.3.3 Relationship Between Oscillator S
and L
252 9.4 Processing Phase Noise in a Cascade 252 9.4.1 Filtering by Phase-Locked Loops 253 9.4.2 Filtering by Ordinary Filters 254 9.4.3 Implication of Noise Figure 255 9.4.4 Transfer from Local Oscillators 255 9.4.5 Transfer from Data Clocks 256 9.4.6 Integration of Phase Noise 258 9.5 Determining the Effect on Data 258 9.5.1 Error Probability 258 9.5.2 Computing Phase Variance, Limits of Integration 259 9.5.3 Effect of the Carrier-Recovery Loop on Phase Noise 260 9.5.4 Effect of the Loop on Additive Noise 262 9.5.5 Contribution of Phase Noise to Data Errors 263 9.5.6 Effects of the Low-Frequency Phase Noise 268 9.6 Other Measures of Phase Noise 269 9.6.1 Jitter 269 9.6.2 Allan Variance 271 9.7 Summary 271 Endnote 272 Appendix A OP AMP Noise Factor Calculations 273 A.1 Invariance When Input Resistor Is Redistributed 273 A.2 Effect of Change in Source Resistances 274 A.3 Model 276 Appendix B Representations of Frequency Bands, If Normalization 279 B.1 Passbands 279 B.2 Acceptance Bands 279 B.3 Filter Asymmetry 286 Appendix C Conversion Arithmetic 289 C.1 Receiver Calculator 289 C.2 Synthesis Calculator 291 Appendix E Example of Frequency Conversion 293 Appendix F Some Relevant Formulas 303 F.1 Decibels 303 F.2 Reflection Coefficient and SWR 304 F.3 Combining SWRs 306 F.3.1 Summary of Results 306 F.3.2 Development 307 F.3.3 Maximum SWR 308 F.3.4 Minimum SWR 309 F.3.5 Relaxing Restrictions 309 F.4 Impedance Transformations in Cables 310 F.5 Smith Chart 310 Appendix G Types of Power Gain 313 G.1 Available Gain 313 G.2 Maximum Available Gain 313 G.3 Transducer Gain 314 G.4 Insertion Gain 315 G.5 Actual Gain 315 Appendix H Formulas Relating to IMs and Harmonics 317 H.1 Second Harmonics 317 H.2 Second-Order IMs 318 H.3 Third Harmonics 318 H.4 Third-Order IMs 319 H.5 Definitions of Terms 320 Appendix I Changing the Standard Impedance 321 I.1 General Case 321 I.2 Unilateral Module 323 Appendix L Power Delivered to the Load 325 Appendix M Matrix Multiplication 327 Appendix N Noise Factors-Standard and Theoretical 329 N.1 Theoretical Noise Factor 329 N.2 Standard Noise Factor 331 N.3 Standard Modules and Standard Noise Factor 332 N.4 Module Noise Factor in a Standard Cascade 333 N.5 How Can This Be? 334 N.6 Noise Factor of an Interconnect 334 N.6.1 Noise Factor with Mismatch 335 N.6.2 In More Usable Terms 336 N.6.3 Verification 338 N.6.4 Comparison with Theoretical Value 340 N.7 Effect of Source Impedance 341 N.8 Ratio of Power Gains 342 Endnote 343 Appendix P IM Products In Mixers 345 Appendix S Composite S Parameters 349 Appendix T Third-Order Terms at Input Frequency 353 Appendix V Sensitivities and Variance of Noise Figure 355 Appendix X Crossover Spurs 359 Appendix Z Nonstandard Modules 363 Z.1 Gain of Cascade of Modules Relative to Tested Gain 363 Z.2 Finding Maximum Available Gain of a Module 366 Z.3 Interconnects 367 Z.4 Equivalent S Parameters 367 Z.5 S Parameters for Cascade of Nonstandard Modules 368 Endnote 369 References 371 Endnote 377 Index 379