73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
Jetzt verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
  • Format: PDF

This work presents a "Clean Quantum Theory of the Electron", based on Dirac's equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac's theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin ¿) moving in a given electromagnetic field. This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, à la Newton and Einstein. Normally, our…mehr

Produktbeschreibung
This work presents a "Clean Quantum Theory of the Electron", based on Dirac's equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac's theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin ¿) moving in a given electromagnetic field. This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, à la Newton and Einstein. Normally, our fields are time-independent, but also discussed is the time-dependent case, where slightly different features prevail. A "Schroedinger particle", such as a light quantum, experiences a very different (time-dependent) "Precise Predictablity of Observables". An attempt is made to compare both cases. There is not the Heisenberg uncertainty of location and momentum; rather, location alone possesses a built-in uncertainty of measurement. Mathematically, our tools consist of the study of a pseudo-differential operator (i.e. an "observable") under conjugation with the Dirac propagator: such an operator has a "symbol" approximately propagating along classical orbits, while taking its "spin" along. This is correct only if the operator is "precisely predictable", that is, it must approximately commute with the Dirac Hamiltonian, and, in a sense, will preserve the subspaces of electronic and positronic states of the underlying Hilbert space.

Audience: Theoretical Physicists, specifically in Quantum Mechanics. Mathematicians, in the fields of Analysis, Spectral Theory of Self-adjoint differential operators, and Elementary Theory of Pseudo-Differential Operators


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Heinz Otto Cordes, University of Berkeley, CA, USA
Rezensionen
From the reviews: "In this very interesting book, the author proposes a modification of Dirac's theory of the electron, that he believes to be free of the systematic well-known difficulties that give rise to the usual paradoxes. ... the direction he describes in this book is promising, and will hopefully open the way to the construction of a more general framework." (Alberto Parmeggiani, Mathematical Reviews, Issue 2008 j) "In this book Heinz Otto Cordes tries to make a contribution from the point of view of a mathematician, and it is certainly an interesting one. ... it is very pleasant reading for the more mathematically inclined person, and those with some interest in physics will enjoy the many insightful remarks about quantum mechanics immersed in the text. I warmly recommend this book to mathematicians and mathematical physicists interested in the Dirac equation." (Bernd Thaller, SIAM Review, Vol. 50 (2), 2008)