65,95 €
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
33 °P sammeln
65,95 €
65,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
33 °P sammeln
Als Download kaufen
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
33 °P sammeln
Jetzt verschenken
65,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
33 °P sammeln
  • Format: PDF

Predicting Outdoor Sound provides a scholarly yet practical examination for acoustical engineers of the phenomena that affect outdoor sound close to the ground and its prediction.

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 42.51MB
Produktbeschreibung
Predicting Outdoor Sound provides a scholarly yet practical examination for acoustical engineers of the phenomena that affect outdoor sound close to the ground and its prediction.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Keith Attenborough is Professor in Acoustics at the Open University, a former Editor-in-Chief of Applied Acoustics, and a former Associate Editor of the Journal of the Acoustical Society of America and Acta Acustica. He is co-author with Oleksandr Zaporozhets and Vadim Tokarev for Aircraft Noise (CRC Press, 2017), and has co-authored several chapters in Environmental Methods for Transport Noise Reduction (CRC Press, 2019). He is Chair of ANSI S1 WG20 on the measurement of outdoor ground impedance.

Timothy Van Renterghem is Associate Professor in Environmental Sound at Ghent University and holds a MSc. degree in Bioengineering (Environmental Technologies) and a PhD in Applied Physical Engineering. He is Associate Editor of Acta Acustica, the journal of the European Acoustics Association, and Elsevier's Urban Forestry and Urban Greening. His main research interests include the impact of local meteorology on sound propagation outdoors, green noise reducing measures, and urban sound propagation with a strong focus on (detailed) numerical modelling.