-22%11
34,99 €
44,99 €**
34,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
17 °P sammeln
-22%11
34,99 €
44,99 €**
34,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
17 °P sammeln
Als Download kaufen
44,99 €****
-22%11
34,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
17 °P sammeln
Jetzt verschenken
44,99 €****
-22%11
34,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
17 °P sammeln
  • Format: PDF

Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils eine Illustration der Verfahren mit Hilfe von Beispielen, die mit dem Programmpaket R erarbeitet werden. Zum Abschluss wird eine einfache Möglichkeit präsentiert, mit der die Performancewerte verschiedener Verfahren mit statistischen Mitteln verglichen werden können. Zum Einsatz kommen hierbei…mehr

Produktbeschreibung
Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils eine Illustration der Verfahren mit Hilfe von Beispielen, die mit dem Programmpaket R erarbeitet werden.
Zum Abschluss wird eine einfache Möglichkeit präsentiert, mit der die Performancewerte verschiedener Verfahren mit statistischen Mitteln verglichen werden können. Zum Einsatz kommen hierbei geeignete Grafiken und Konfidenzintervalle.
Das Buch verzichtet nicht auf Theorie, es präsentiert jedoch so wenig Theorie wie möglich, aber so viel wie nötig und ist somit optimal für Studium und Selbststudium geeignet.
Der Inhalt
  • Deskriptive Verfahren
  • Clusterverfahren
  • Dimensionsreduktion
  • Prädiktive Verfahren für Klassifikations- und Regressionsfragestellungen
  • Empirischer Vergleich der Performance verschiedener Klassifikationsverfahren
Die Zielgruppe
  • Studierende der Wirtschaftsinformatik, Informatik und Ingenieurwissenschaften
Die Autorin
Marlis von der Hude hat Mathematik mit dem Schwerpunkt Statistik an der Freien Universität Berlin studiert und anschließend an der Technischen Universität Berlin promoviert. Nach mehreren praktischen Tätigkeiten im Gesundheits- und Wirtschaftsbereich hat sie zuletzt viele Jahre im Fachbereich Informatik der Hochschule Bonn-Rhein-Sieg gelehrt.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Marlis von der Hude hat Mathematik mit dem Schwerpunkt Statistik an der Freien Universität Berlin studiert und anschließend an der Technischen Universität Berlin promoviert. Nach mehreren praktischen Tätigkeiten im Gesundheits- und Wirtschaftsbereich hat sie zuletzt viele Jahre im Fachbereich Informatik der Hochschule Bonn-Rhein-Sieg gelehrt.