Predictive Intelligence in Medicine (eBook, PDF)
5th International Workshop, PRIME 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings
Redaktion: Rekik, Islem; Cintas, Celia; Park, Sang Hyun; Adeli, Ehsan
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Predictive Intelligence in Medicine (eBook, PDF)
5th International Workshop, PRIME 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings
Redaktion: Rekik, Islem; Cintas, Celia; Park, Sang Hyun; Adeli, Ehsan
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the proceedings of the 5th International Workshop on Predictive Intelligence in Medicine, PRIME 2022, held in conjunction with MICCAI 2022 as a hybrid event in Singapore, in September 2022.
The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 25.85MB
Andere Kunden interessierten sich auch für
- Predictive Intelligence in Medicine (eBook, PDF)40,95 €
- Predictive Intelligence in Medicine (eBook, PDF)53,95 €
- Artificial Neural Networks and Machine Learning - ICANN 2022 (eBook, PDF)40,95 €
- Artificial Neural Networks and Machine Learning - ICANN 2022 (eBook, PDF)40,95 €
- Computer Vision - ACCV 2022 (eBook, PDF)129,95 €
- Advances in Computational Collective Intelligence (eBook, PDF)73,95 €
- Neural Information Processing (eBook, PDF)89,95 €
-
-
-
This book constitutes the proceedings of the 5th International Workshop on Predictive Intelligence in Medicine, PRIME 2022, held in conjunction with MICCAI 2022 as a hybrid event in Singapore, in September 2022.
The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.
The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 213
- Erscheinungstermin: 20. September 2022
- Englisch
- ISBN-13: 9783031169199
- Artikelnr.: 65843567
- Verlag: Springer International Publishing
- Seitenzahl: 213
- Erscheinungstermin: 20. September 2022
- Englisch
- ISBN-13: 9783031169199
- Artikelnr.: 65843567
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Federated Time-dependent GNN Learning from Brain Connectivity Data with Missing Timepoints.- Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.- Multi-Tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas.- Multiple Instance Neuroimage Transformer.- Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach.- Mixup augmentation improves age prediction from T1-weighted brain MRI scans.- Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning.- MISS-Net: Multi-view contrastive transformer network for MCI stages prediction using brain 18F-FDG PET imaging.- TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation.- Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study.- Weakly-Supervised TILs Segmentation based on Point Annotations using Transfer Learning with Point Detector and Projected-Boundary Regressor.- Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage.- Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-Task Learning on Imaging and Tabular Data.- Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts.- Investigating the Predictive Reproducibility of Federated Graph Neural Networks using Medical Datasets.- Learning subject-specific functional parcellations from cortical surface measures.- A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images.- Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification.- Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using Graph Neural Networks and Meta-Learning
Federated Time-dependent GNN Learning from Brain Connectivity Data with Missing Timepoints.- Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.- Multi-Tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas.- Multiple Instance Neuroimage Transformer.- Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach.- Mixup augmentation improves age prediction from T1-weighted brain MRI scans.- Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning.- MISS-Net: Multi-view contrastive transformer network for MCI stages prediction using brain 18F-FDG PET imaging.- TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation.- Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study.- Weakly-Supervised TILs Segmentation based on Point Annotations using Transfer Learning with Point Detector and Projected-Boundary Regressor.- Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage.- Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-Task Learning on Imaging and Tabular Data.- Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts.- Investigating the Predictive Reproducibility of Federated Graph Neural Networks using Medical Datasets.- Learning subject-specific functional parcellations from cortical surface measures.- A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images.- Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification.- Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using Graph Neural Networks and Meta-Learning