37,95 €
37,95 €
inkl. MwSt.
Sofort per Download lieferbar
37,95 €
37,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
37,95 €
inkl. MwSt.
Sofort per Download lieferbar
Jetzt verschenken
37,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
  • Format: PDF

Fluid dynamical forces drive most of the fundamental processes in the Universe and so play a crucial role in our understanding of astrophysics. This comprehensive textbook, first published in 2007, introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors' approach is to introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical…mehr

Produktbeschreibung
Fluid dynamical forces drive most of the fundamental processes in the Universe and so play a crucial role in our understanding of astrophysics. This comprehensive textbook, first published in 2007, introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors' approach is to introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical processes. The textbook has been developed for use by final-year undergraduate and starting graduate students of astrophysics, and contains over fifty exercises. It is based on the authors' many years of teaching their astrophysical fluid dynamics course at the University of Cambridge.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Cathie Clarke is Reader in Theoretical Astrophysics at the University of Cambridge and Director of Studies in Astrophysics at Clare College. She developed the original course in Astrophysical Fluid Dynamics as part of Part II Astrophysics in 1996 and delivered the course 1996-9. Her research is based on accretion disc theory and star formation (both of which are strongly based on fluid dynamics) and she is the author of around 70 articles in refereed journals, plus a further 50 reviews, proceedings etc. She has taught extensively within the University of Cambridge, having also delivered lecture courses in Statistical Physics, Mathematical Methods and Galactic Dynamics, and has supervised for a variety of courses within the Physics and Mathematics Triposes.