First ACM SIGKDD International Workshop, PinKDD 2007, San Jose, CA, USA, August 12, 2007, Revised, Selected Papers Redaktion: Bonchi, Francesco; Saygin, Yücel; Malin, Bradley; Ferrari, Elena
First ACM SIGKDD International Workshop, PinKDD 2007, San Jose, CA, USA, August 12, 2007, Revised, Selected Papers Redaktion: Bonchi, Francesco; Saygin, Yücel; Malin, Bradley; Ferrari, Elena
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the post-workshop proceedings of the First International Workshop on Privacy, Security, and Trust in KDD. It covers all prevailing topics concerning privacy, security, and trust aspects of data mining and knowledge discovery.
This book constitutes the post-workshop proceedings of the First International Workshop on Privacy, Security, and Trust in KDD. It covers all prevailing topics concerning privacy, security, and trust aspects of data mining and knowledge discovery.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Invited Paper.- An Ad Omnia Approach to Defining and Achieving Private Data Analysis.- Contributed Papers.- Phoenix: Privacy Preserving Biclustering on Horizontally Partitioned Data.- Allowing Privacy Protection Algorithms to Jump Out of Local Optimums: An Ordered Greed Framework.- Probabilistic Anonymity.- Website Privacy Preservation for Query Log Publishing.- Privacy-Preserving Data Mining through Knowledge Model Sharing.- Privacy-Preserving Sharing of Horizontally-Distributed Private Data for Constructing Accurate Classifiers.- Towards Privacy-Preserving Model Selection.- Preserving the Privacy of Sensitive Relationships in Graph Data.
Invited Paper.- An Ad Omnia Approach to Defining and Achieving Private Data Analysis.- Contributed Papers.- Phoenix: Privacy Preserving Biclustering on Horizontally Partitioned Data.- Allowing Privacy Protection Algorithms to Jump Out of Local Optimums: An Ordered Greed Framework.- Probabilistic Anonymity.- Website Privacy Preservation for Query Log Publishing.- Privacy-Preserving Data Mining through Knowledge Model Sharing.- Privacy-Preserving Sharing of Horizontally-Distributed Private Data for Constructing Accurate Classifiers.- Towards Privacy-Preserving Model Selection.- Preserving the Privacy of Sensitive Relationships in Graph Data.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826