Neeraj Kumar, Arzoo Miglani
Probabilistic Data Structures for Blockchain-Based Internet of Things Applications (eBook, PDF)
68,95 €
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
34 °P sammeln
68,95 €
Als Download kaufen
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
34 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
34 °P sammeln
Neeraj Kumar, Arzoo Miglani
Probabilistic Data Structures for Blockchain-Based Internet of Things Applications (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book covers theory and practical knowledge of probabilistic data structures (PDS) and blockchain (BC) concepts. It introduces the applicability of PDS in BC and each PDS has been explained through code snippets and illustrative examples. Further, it covers applications of PDS to BC along with implementation codes in Python.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 32.93MB
Andere Kunden interessierten sich auch für
- Neeraj KumarProbabilistic Data Structures for Blockchain-Based Internet of Things Applications (eBook, ePUB)68,95 €
- V. PriyaComputational Techniques for Text Summarization based on Cognitive Intelligence (eBook, PDF)52,95 €
- S. SumathiComputational Intelligence Paradigms (eBook, PDF)52,95 €
- Srinidhi HiriyannaiahCloud-based Multi-Modal Information Analytics (eBook, PDF)52,95 €
- Sarika JainUnderstanding Semantics-Based Decision Support (eBook, PDF)47,95 €
- Pijush DuttaArtificial Intelligence for Cognitive Modeling (eBook, PDF)52,95 €
- Waymond RodgersArtificial Intelligence in a Throughput Model: Some Major Algorithms (eBook, PDF)72,95 €
-
-
-
This book covers theory and practical knowledge of probabilistic data structures (PDS) and blockchain (BC) concepts. It introduces the applicability of PDS in BC and each PDS has been explained through code snippets and illustrative examples. Further, it covers applications of PDS to BC along with implementation codes in Python.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 322
- Erscheinungstermin: 27. Januar 2021
- Englisch
- ISBN-13: 9781000327632
- Artikelnr.: 60915401
- Verlag: Taylor & Francis
- Seitenzahl: 322
- Erscheinungstermin: 27. Januar 2021
- Englisch
- ISBN-13: 9781000327632
- Artikelnr.: 60915401
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. Neeraj Kumar received his Ph.D. in CSE from Shri Mata Vaishno Devi University, Katra (Jammu and Kashmir), India in 2009, and was a postdoctoral research fellow in Coventry University, Coventry, UK. He is working as a Professor in the Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology (Deemed to be University), Patiala (Pb.), India. His research areas are Network management, IoT, Big Data Analytics, Deep learning and cyber-security.
Arzoo Miglani is currently pursuing Ph.D. from Thapar Institute of Engineering & Technology (TIET), Patiala. She had worked with DIT University, Dehradun for 2 years as an assistant professor and with TIET for 1 year. She has done her ME in Information Security from TIET in 2015. She has completed her B.tech from GJU, Hisar in 2009. She is GATE qualified. Her research area includes Wireless Sensor networks and network security, blockchain and content centric networking.
Arzoo Miglani is currently pursuing Ph.D. from Thapar Institute of Engineering & Technology (TIET), Patiala. She had worked with DIT University, Dehradun for 2 years as an assistant professor and with TIET for 1 year. She has done her ME in Information Security from TIET in 2015. She has completed her B.tech from GJU, Hisar in 2009. She is GATE qualified. Her research area includes Wireless Sensor networks and network security, blockchain and content centric networking.
Part I-Background: 1. Overview of Internet of Things. 2 Smart applications.
3. IoT challenges. Part II- Blockchain overview. 4 Python Basics. 5.
Cryptography primitives. 6. Blockchain technology and technical
foundations. 7. Verification and validation methods used by Blockchain. 8.
Data structures for Blockchain. Part III-Probabilistic data structures: An
overview. 9. Introduction to probabilistic data structures. 10. Membership
Query Probabilistic Data Structures. 11. Cardinality Estimation
Probabilistic Data Structures. 12. Frequency Count Query Probabilistic Data
Structures. 13. Approximate Similarity Search Query Probabilistic Data
Structures. Part IV-Integration of Probabilistic Data Structures with
Blockchain. 14. Applicability of membership query PDS with Blockchain. 15.
Applicability of cardinality estimation PDS with Blockchain. 16.
Applicability of frequency estimation PDS with Blockchain. 17.
Applicability of approximate similarity search PDS with Blockchain.
3. IoT challenges. Part II- Blockchain overview. 4 Python Basics. 5.
Cryptography primitives. 6. Blockchain technology and technical
foundations. 7. Verification and validation methods used by Blockchain. 8.
Data structures for Blockchain. Part III-Probabilistic data structures: An
overview. 9. Introduction to probabilistic data structures. 10. Membership
Query Probabilistic Data Structures. 11. Cardinality Estimation
Probabilistic Data Structures. 12. Frequency Count Query Probabilistic Data
Structures. 13. Approximate Similarity Search Query Probabilistic Data
Structures. Part IV-Integration of Probabilistic Data Structures with
Blockchain. 14. Applicability of membership query PDS with Blockchain. 15.
Applicability of cardinality estimation PDS with Blockchain. 16.
Applicability of frequency estimation PDS with Blockchain. 17.
Applicability of approximate similarity search PDS with Blockchain.
Part I-Background: 1. Overview of Internet of Things. 2 Smart applications.
3. IoT challenges. Part II- Blockchain overview. 4 Python Basics. 5.
Cryptography primitives. 6. Blockchain technology and technical
foundations. 7. Verification and validation methods used by Blockchain. 8.
Data structures for Blockchain. Part III-Probabilistic data structures: An
overview. 9. Introduction to probabilistic data structures. 10. Membership
Query Probabilistic Data Structures. 11. Cardinality Estimation
Probabilistic Data Structures. 12. Frequency Count Query Probabilistic Data
Structures. 13. Approximate Similarity Search Query Probabilistic Data
Structures. Part IV-Integration of Probabilistic Data Structures with
Blockchain. 14. Applicability of membership query PDS with Blockchain. 15.
Applicability of cardinality estimation PDS with Blockchain. 16.
Applicability of frequency estimation PDS with Blockchain. 17.
Applicability of approximate similarity search PDS with Blockchain.
3. IoT challenges. Part II- Blockchain overview. 4 Python Basics. 5.
Cryptography primitives. 6. Blockchain technology and technical
foundations. 7. Verification and validation methods used by Blockchain. 8.
Data structures for Blockchain. Part III-Probabilistic data structures: An
overview. 9. Introduction to probabilistic data structures. 10. Membership
Query Probabilistic Data Structures. 11. Cardinality Estimation
Probabilistic Data Structures. 12. Frequency Count Query Probabilistic Data
Structures. 13. Approximate Similarity Search Query Probabilistic Data
Structures. Part IV-Integration of Probabilistic Data Structures with
Blockchain. 14. Applicability of membership query PDS with Blockchain. 15.
Applicability of cardinality estimation PDS with Blockchain. 16.
Applicability of frequency estimation PDS with Blockchain. 17.
Applicability of approximate similarity search PDS with Blockchain.