124,95 €
124,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
62 °P sammeln
124,95 €
124,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
62 °P sammeln
Als Download kaufen
124,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
62 °P sammeln
Jetzt verschenken
124,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
62 °P sammeln
  • Format: PDF

Quasibrittle (or brittle heterogeneous) materials are becoming increasingly important for modern engineering. They include concretes, rocks, fiber composites, tough ceramics, sea ice, bone, wood, stiff soils, rigid foams, glass, dental and biomaterials, as well as all brittle materials on the micro or nano scale. Their salient feature is that the fracture process zone size is non-negligible compared to the structural dimensions. This causes intricate energetic and statistical size effects and leads to size-dependent probability distribution of strength, transitional between Gaussian and…mehr

Produktbeschreibung
Quasibrittle (or brittle heterogeneous) materials are becoming increasingly important for modern engineering. They include concretes, rocks, fiber composites, tough ceramics, sea ice, bone, wood, stiff soils, rigid foams, glass, dental and biomaterials, as well as all brittle materials on the micro or nano scale. Their salient feature is that the fracture process zone size is non-negligible compared to the structural dimensions. This causes intricate energetic and statistical size effects and leads to size-dependent probability distribution of strength, transitional between Gaussian and Weibullian. The ensuing difficult challenges for safe design are vanquished in this book, which features a rigorous theory with detailed derivations yet no superfluous mathematical sophistication; extensive experimental verifications; and realistic approximations for design. A wide range of subjects is covered, including probabilistic fracture kinetics at nanoscale, multiscale transition, statistics of structural strength and lifetime, size effect, reliability indices, safety factors, and ramification to gate dielectrics breakdown.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Zdenek P. Bazant received his PhD from the Czechoslovak Academy of Sciences in 1963.He joined Northwestern University, Illinois in 1969, where he has been W. P. Murphy Professor since 1990 and simultaneously McCormick Institute Professor since 2002, and Director of the Center for Geomaterials (1981-7). He is a member of the US National Academy of Sciences, the US National Academy of Engineering, the American Academy of Arts and Sciences, and the Royal Society of London, as well as the Austrian Academy of Sciences, the Engineering Academy of the Czech Republic, the Italian National Academy, the Spanish Royal Academy of Engineering, the Istituto Lombardo, Milan, the Academia Europaea, London, and the European Academy of Sciences and Arts. Bazant is an Honorary Member of the American Society of Civil Engineers (ASCE), the American Society of Mechanical Engineers (ASME), the American Concrete Institute, and RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures), Paris. He has received the Austrian Cross of Honor for Science and Art, First Class, 7 honorary doctorates, ASME Timoshenko, Nadai and Warner Medals, the ASCE von Karman, Newmark, Biot, Mindlin and Croes Medals and Lifetime Achievement Award, the Society of Engineering Science William Prager Medal, and the RILEM L'Hermite Medal, among others. He is the author of Scaling of Structural Strength (2002), Inelastic Analysis of Structures (with Milan Zirásek, 2001), Fracture and Size Effect in Concrete and Other Quasibrittle Materials (with Jaime Planas, 1997), Stability of Structures (with Luigi Cedolin, 2010) and Concrete at High Temperatures (with Maurice F. Kaplan, 1996). In 2015, ASCE established ZP Baant Medal for Failure and Damage Prevention. He is one of the original top 100 ISI Highly Cited Scientists in Engineering (www.ISIhighlycited.com).