24,95 €
24,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
12 °P sammeln
24,95 €
24,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
12 °P sammeln
Als Download kaufen
24,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
12 °P sammeln
Jetzt verschenken
24,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
12 °P sammeln
  • Format: PDF

The expert guide to creating production machine learning solutions with ML.NET!
ML.NET brings the power of machine learning to all .NET developers- and Programming ML.NET helps you apply it in real production solutions. Modeled on Dino Esposito's best-selling Programming ASP.NET, this book takes the same scenario-based approach Microsoft's team used to build ML.NET itself. After a foundational overview of ML.NET's libraries, the authors illuminate mini-frameworks ("ML Tasks") for regression, classification, ranking, anomaly detection, and more. For each ML Task, they offer insights for…mehr

Produktbeschreibung
The expert guide to creating production machine learning solutions with ML.NET!

ML.NET brings the power of machine learning to all .NET developers- and Programming ML.NET helps you apply it in real production solutions. Modeled on Dino Esposito's best-selling Programming ASP.NET, this book takes the same scenario-based approach Microsoft's team used to build ML.NET itself. After a foundational overview of ML.NET's libraries, the authors illuminate mini-frameworks ("ML Tasks") for regression, classification, ranking, anomaly detection, and more. For each ML Task, they offer insights for overcoming common real-world challenges. Finally, going far beyond shallow learning, the authors thoroughly introduce ML.NET neural networking. They present a complete example application demonstrating advanced Microsoft Azure cognitive services and a handmade custom Keras network- showing how to leverage popular Python tools within .NET.

14-time Microsoft MVP Dino Esposito and son Francesco Esposito show how to:

  • Build smarter machine learning solutions that are closer to your user's needs
  • See how ML.NET instantiates the classic ML pipeline, and simplifies common scenarios such as sentiment analysis, fraud detection, and price prediction
  • Implement data processing and training, and "productionize" machine learning-based software solutions
  • Move from basic prediction to more complex tasks, including categorization, anomaly detection, recommendations, and image classification
  • Perform both binary and multiclass classification
  • Use clustering and unsupervised learning to organize data into homogeneous groups
  • Spot outliers to detect suspicious behavior, fraud, failing equipment, or other issues
  • Make the most of ML.NET's powerful, flexible forecasting capabilities
  • Implement the related functions of ranking, recommendation, and collaborative filtering
  • Quickly build image classification solutions with ML.NET transfer learning
  • Move to deep learning when standard algorithms and shallow learning aren't enough
  • "Buy" neural networking via the Azure Cognitive Services API, or explore building your own with Keras and TensorFlow



Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dino Esposito is CTO and co-founder of Crionet, a company that provides innovative software and technology to professional sports organizations. A 16-time Microsoft MVP, he has authored 20+ books, including Introducing Machine Learning; and the Microsoft Press best-seller Microsoft .NET: Architecting Applications for the Enterprise.

Francesco Esposito holds a degree in Mathematics, is the co-author of Introducing Machine Learning, and lives suspended between the depth of advanced mathematics and the intrigue of data science. He currently serves as the Head of Engineering and Data at Crionet. As an entrepreneur he founded Youbiquitous, a data analysis and software factory, and KBMS Data Force, a startup in Digital Therapy and intelligent healthcare.