Günter Pickert
Projektive Ebenen (eBook, PDF)
42,99 €
42,99 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
42,99 €
Als Download kaufen
42,99 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
42,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Günter Pickert
Projektive Ebenen (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 35.81MB
Andere Kunden interessierten sich auch für
- -23%11Stefan LiebscherProjektive Geometrie der Ebene (eBook, PDF)22,99 €
- -28%11Christian JuelVorlesungen über Projektive Geometrie (eBook, PDF)35,96 €
- -22%11Hermann GrassmannProjektive Geometrie der Ebene Unter Benutzung der Punktrechnung Dargestellt (eBook, PDF)42,99 €
- -22%11Hermann GrassmannProjektive Geometrie der Ebene Unter Benutzung der Punktrechnung Dargestellt (eBook, PDF)42,99 €
- -22%11Hermann GrassmannProjektive Geometrie der Ebene (eBook, PDF)42,99 €
- Anna WeigeleEinführung in die projektive Geometrie. Der Satz von Pappus (eBook, PDF)15,99 €
- Arkadij L. OnishchikProjective and Cayley-Klein Geometries (eBook, PDF)73,95 €
- -22%11
- -25%11
- -33%11
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 374
- Erscheinungstermin: 12. März 2013
- Deutsch
- ISBN-13: 9783642661488
- Artikelnr.: 53379984
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Erläuterungen.- A. Rückverweisungen.- B. Allgemeine mathematische Bezeichnungen.- 1. Grundbegriffe.- 1.1. Inzidenzstrukturen.- 1.2. Projektive und affine Ebenen.- 1.3. Freie Erweiterungen.- 1.4. Schließungssätze.- 1.5. Koordinateneinführung in affinen Ebenen.- 1.6. Koordinaten in der dualen Ebene.- 2. Gewebe.- 2.1. Darstellung von 3-Geweben mittels Loops.- 2.2. Isotopie.- 2.3. Die Bedingungen von Reidemeister, Bol und Thomsen.- 2.4. Darstellung von 4-Geweben mittels Doppel-Loops.- 3. Der Satz von Desargues.- 3.1. Zentrale Kollineationen.- 3.2. Der Satz von Desargues.- 3.3. Die Ausartungen des Desarguesschen Satzes.- 3.4. Cartesische Gruppen und Quasikörper.- 3.5. Sonderfälle des Desarguesschen Satzes als Ternarkörpereigenschaften.- 4. Desarguessche Ebenen.- 4.1. Kollineationen und homogene Koordinaten.- 4.2. Doppelverhältnisse.- 4.3. Quasiperspektivitäten.- 4.4. Der Satz vom Viereckschnitt.- 5. Der Satz von Pappos.- 5.1. Mit dem Satz von Pappos gleichwertige Aussagen.- 5.2. Weitere Herleitungen des Desarguesschen Satzes aus dem Satz von Pappos.- 5.3. Homogenität einer projektiven Ebene.- 5.4. Ausartungen des Satzes von Pappos.- 6. Alternativkörper.- 6.1. Definitionen und Rechenregeln.- 6.2. Alternativkörper als Algebra über dem Zentrum.- 6.3. Quadratische Algebren.- 6.4. Alternativkörper der Charakteristik 2.- 6.5. Rechtsalternativkörper.- 7. Moufang-Ebenen.- 7.1.Moufang-Ebenen und Alternativkörper.- 7.2. Der Satz vom vollständigen Viereck.- 7.3. Die Kollineationsgruppe.- 8. Translationsebenen.- 8.1. Translationsebenen und Kongruenzen.- 8.2. Der Kern einer Translationsebene.- 8.3. Die Kollineationsgruppe.- 8.4. Translationsebenen der Charakteristik ? 2.- 8.5. Translationsebenen über assoziativen Quasikörpern.- 9. Angeordnete Ebenen.- 9.1.Anordnungen, Zwischen- und Trennbeziehungen.- 9.2. Angeordnete affine und projektive Ebenen.- 9.3. Einfluß der Anordnung auf die Koordinatenbereiche.- 9.4. Archimedische Anordnung.- 9.5. Ordnungsfunktionen.- 10. Topologische Ebenen.- 10.1. Topologie und Ternärkörper.- 10.2. Angeordnete topologische Ebenen.- 11. Möbius-Netze.- 11.1. Möbius-Netze und dreifache Ausartung des Desarguesschen Satzes.- 11.2. Schließungssätze vom Rang 8.- 12. Endliche Ebenen.- 12.1. Einordnung unter allgemeinere kombinatorische Begriffe.- 12.2. Punkteanzahl.- 12.3. Vollständige Vierecke mit kollinearen Diagonalpunkten.- 12.4. Desarguessche und zyklische Ebenen.- 12.5. Kollineationen.- 1. Kennzeichnung der desarguesschen Ebenen als Untergruppenmengen.- 2. Beweis des Desarguesschen Satzes in einer projektiven Ebene mit genau 8 Punkten auf jeder Geraden.- 3. Ergänzendes über offene Inzidenzstrukturen.- 4. Vereinfachter Beweis des Hauptsatzes über Alternativkörper.- 5. Eine andere Koordinateneinführung.- 6. Die Lenz-Barlotti-Klassifizierung.- 7. Ergänzungen.- Anhang zum Literaturverzeichnis.- Verzeichnis der Formelnummern.- Zeichenzusammenstellung.
Erläuterungen.- A. Rückverweisungen.- B. Allgemeine mathematische Bezeichnungen.- 1. Grundbegriffe.- 1.1. Inzidenzstrukturen.- 1.2. Projektive und affine Ebenen.- 1.3. Freie Erweiterungen.- 1.4. Schließungssätze.- 1.5. Koordinateneinführung in affinen Ebenen.- 1.6. Koordinaten in der dualen Ebene.- 2. Gewebe.- 2.1. Darstellung von 3-Geweben mittels Loops.- 2.2. Isotopie.- 2.3. Die Bedingungen von Reidemeister, Bol und Thomsen.- 2.4. Darstellung von 4-Geweben mittels Doppel-Loops.- 3. Der Satz von Desargues.- 3.1. Zentrale Kollineationen.- 3.2. Der Satz von Desargues.- 3.3. Die Ausartungen des Desarguesschen Satzes.- 3.4. Cartesische Gruppen und Quasikörper.- 3.5. Sonderfälle des Desarguesschen Satzes als Ternarkörpereigenschaften.- 4. Desarguessche Ebenen.- 4.1. Kollineationen und homogene Koordinaten.- 4.2. Doppelverhältnisse.- 4.3. Quasiperspektivitäten.- 4.4. Der Satz vom Viereckschnitt.- 5. Der Satz von Pappos.- 5.1. Mit dem Satz von Pappos gleichwertige Aussagen.- 5.2. Weitere Herleitungen des Desarguesschen Satzes aus dem Satz von Pappos.- 5.3. Homogenität einer projektiven Ebene.- 5.4. Ausartungen des Satzes von Pappos.- 6. Alternativkörper.- 6.1. Definitionen und Rechenregeln.- 6.2. Alternativkörper als Algebra über dem Zentrum.- 6.3. Quadratische Algebren.- 6.4. Alternativkörper der Charakteristik 2.- 6.5. Rechtsalternativkörper.- 7. Moufang-Ebenen.- 7.1.Moufang-Ebenen und Alternativkörper.- 7.2. Der Satz vom vollständigen Viereck.- 7.3. Die Kollineationsgruppe.- 8. Translationsebenen.- 8.1. Translationsebenen und Kongruenzen.- 8.2. Der Kern einer Translationsebene.- 8.3. Die Kollineationsgruppe.- 8.4. Translationsebenen der Charakteristik ? 2.- 8.5. Translationsebenen über assoziativen Quasikörpern.- 9. Angeordnete Ebenen.- 9.1.Anordnungen, Zwischen- und Trennbeziehungen.- 9.2. Angeordnete affine und projektive Ebenen.- 9.3. Einfluß der Anordnung auf die Koordinatenbereiche.- 9.4. Archimedische Anordnung.- 9.5. Ordnungsfunktionen.- 10. Topologische Ebenen.- 10.1. Topologie und Ternärkörper.- 10.2. Angeordnete topologische Ebenen.- 11. Möbius-Netze.- 11.1. Möbius-Netze und dreifache Ausartung des Desarguesschen Satzes.- 11.2. Schließungssätze vom Rang 8.- 12. Endliche Ebenen.- 12.1. Einordnung unter allgemeinere kombinatorische Begriffe.- 12.2. Punkteanzahl.- 12.3. Vollständige Vierecke mit kollinearen Diagonalpunkten.- 12.4. Desarguessche und zyklische Ebenen.- 12.5. Kollineationen.- 1. Kennzeichnung der desarguesschen Ebenen als Untergruppenmengen.- 2. Beweis des Desarguesschen Satzes in einer projektiven Ebene mit genau 8 Punkten auf jeder Geraden.- 3. Ergänzendes über offene Inzidenzstrukturen.- 4. Vereinfachter Beweis des Hauptsatzes über Alternativkörper.- 5. Eine andere Koordinateneinführung.- 6. Die Lenz-Barlotti-Klassifizierung.- 7. Ergänzungen.- Anhang zum Literaturverzeichnis.- Verzeichnis der Formelnummern.- Zeichenzusammenstellung.