Der Autor zeigt am Beispiel der ebenen reellen und komplexen projektiven Geometrie und der davon abgeleiteten Cayley-Klein-Geometrien, dass das Mathematisieren eine Bedeutung hat, die weit über das Fach hinausgeht: Zum einen stellt er den erkenntnistheoretischen Aspekt dar, der durch den anschaulich-synthetischen Zugang belegt und durch eine philosophisch-mathematikhistorische Erörterung untermauert wird; zum anderen den Anwendungsaspekt, der auch auf wenig bekannte Anwendungen in der Botanik, Kristallografie, Mechanik und Psychologie bezogen wird.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Aus den Rezensionen:
"Dieses sehr empfehlenswerte Buch bietet eine wertvolle Alternative zu den vielen überwiegend einseitig deduktiv und algebraisch dominierten Zugängen. ... Eine Fülle wertvoller Anmerkungen ... einen gewichtigen Kommentar von Dirac zu der Bedeutung der projektiven Geometrie in der Physik, und ein umfassendes Literatur- und Stichwortverzeichnis beschließen dieses vorzügliche Werk, in welches auch langjährige Erfahrungen aus Vorlesungen und philosophische Überlegungen miteinfließen." (H. RINDLER, in: Monatshefte für Mathematik, October/2009, Vol. 158, Issue 2, S. 218 f.)
"Dieses sehr empfehlenswerte Buch bietet eine wertvolle Alternative zu den vielen überwiegend einseitig deduktiv und algebraisch dominierten Zugängen. ... Eine Fülle wertvoller Anmerkungen ... einen gewichtigen Kommentar von Dirac zu der Bedeutung der projektiven Geometrie in der Physik, und ein umfassendes Literatur- und Stichwortverzeichnis beschließen dieses vorzügliche Werk, in welches auch langjährige Erfahrungen aus Vorlesungen und philosophische Überlegungen miteinfließen." (H. RINDLER, in: Monatshefte für Mathematik, October/2009, Vol. 158, Issue 2, S. 218 f.)