68,95 €
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
34 °P sammeln
68,95 €
68,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
34 °P sammeln
Als Download kaufen
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
34 °P sammeln
Jetzt verschenken
68,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
34 °P sammeln
  • Format: PDF

Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Godel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to I 11-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are used in proving…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 2.82MB
  • FamilySharing(5)
Produktbeschreibung
Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Godel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to I 11-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and I 11-CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Helmut Schwichtenberg is an Emeritus Professor of Mathematics at Ludwig-Maximilians-Universität München. He has recently developed the 'proof-assistant' MINLOG, a computer-implemented logic system for proof/program development and extraction of computational content.