Propagation of Sound in Porous Media (eBook, PDF)
Modelling Sound Absorbing Materials
Alle Infos zum eBook verschenken
Propagation of Sound in Porous Media (eBook, PDF)
Modelling Sound Absorbing Materials
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
"The first edition of this book is considered the bible of this topic... Suffice it to say that there is no other published treatise that approaches the depth of treatment offered by this book. The coverage is the state of the published art, while the added contents cover the new known developments in the field." Haisam Osman; Technology Development Manager, United Launch Alliance This long-awaited second edition of a respected text from world leaders in the field of acoustic materials covers the state of the art with a depth of treatment unrivalled elsewhere. Allard and Atalla employ a…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 6.08MB
- Wear (eBook, PDF)159,99 €
- Edward J. VinarcikHigh Integrity Die Casting Processes (eBook, PDF)147,99 €
- A. BakerOptimal Modified Continuous Galerkin CFD (eBook, PDF)121,99 €
- Practical Residual Stress Measurement Methods (eBook, PDF)113,99 €
- Propagation of Sound in Porous Media (eBook, PDF)62,95 €
- Christian LalanneMechanical Vibration and Shock Analysis, Volume 3, Random Vibration (eBook, PDF)181,99 €
- Christian LalanneMechanical Vibration and Shock Analysis, Volume 4, Fatigue Damage (eBook, PDF)181,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 372
- Erscheinungstermin: 13. Oktober 2009
- Englisch
- ISBN-13: 9780470747346
- Artikelnr.: 37298957
- Verlag: John Wiley & Sons
- Seitenzahl: 372
- Erscheinungstermin: 13. Oktober 2009
- Englisch
- ISBN-13: 9780470747346
- Artikelnr.: 37298957
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
'. Appendix 5.C: Calculation of the characteristic length
for a cylinder perpendicular to the direction of propagation. References. 6 Biot theory of sound propagation in porous materials having an elastic frame. 6.1 Introduction. 6.2 Stress and strain in porous materials. 6.3 Inertial forces in the biot theory. 6.4 Wave equations. 6.5 The two compressional waves and the shear wave. 6.6 Prediction of surface impedance at normal incidence for a layer of porous material backed by an impervious rigid wall. Appendix 6.A: Other representations of the Biot theory. References. 7 Point source above rigid framed porous layers. 7.1 Introduction. 7.2 Sommerfeld representation of the monopole field over a plane reflecting surface. 7.3 The complex sin
plane. 7.4 The method of steepest descent (passage path method). 7.5 Poles of the reflection coefficient. 7.6 The pole subtraction method. 7.7 Pole localization. 7.8 The modified version of the Chien and Soroka model. Appendix 7.A Evaluation of N. Appendix 7.B Evaluation of pr by the pole subtraction method. Appendix 7.C From the pole subtraction to the passage path: Locally reacting surface. References. 8 Porous frame excitation by point sources in air and by stress circular and line sources - modes of air saturated porous frames. 8.1 Introduction. 8.2 Prediction of the frame displacement. 8.3 Semi-infinite layer - Rayleigh wave. 8.4 Layer of finite thickness - modified Rayleigh wave. 8.5 Layer of finite thickness - modes and resonances. Appendix 8.A Coefficients rij and Mi,j. Appendix 8.B Double Fourier transform and Hankel transform. Appendix 8.B Appendix .C Rayleigh pole contribution. References. 9 Porous materials with perforated facings. 9.1 Introduction. 9.2 Inertial effect and flow resistance. 9.3 Impedance at normal incidence of a layered porous material covered by a perforated facing - Helmoltz resonator. 9.4 Impedance at oblique incidence of a layered porous material covered by a facing having cirular perforations. References. 10 Transversally isotropic poroelastic media. 10.1 Introduction. 10.2 Frame in vacuum. 10.3 Transversally isotropic poroelastic layer. 10.4 Waves with a given slowness component in the symmetry plane. 10.5 Sound source in air above a layer of finite thickness. 10.6 Mechanical excitation at the surface of the porous layer. 10.7 Symmetry axis different from the normal to the surface. 10.8 Rayleigh poles and Rayleigh waves. 10.9 Transfer matrix representation of transversally isotropic poroelastic media. Appendix 10.A: Coefficients Ti in Equation (10.46). Appendix 10.B: Coefficients Ai in Equation (10.97). References. 11 Modelling multilayered systems with porous materials using the transfer matrix method. 11.1 Introduction. 11.2 Transfer matrix method. 11.3 Matrix representation of classical media. 11.4 Coupling transfer matrices. 11.5 Assembling the global transfer matrix. 11.6 Calculation of the acoustic indicators. 11.7 Applications. Appendix 11.A The elements Tij of the Transfer Matrix T ]. References. 12 Extensions to the transfer matrix method. 12.1 Introduction. 12.2 Finite size correction for the transmission problem. 12.3 Finite size correction for the absorption problem. 12.4 Point load excitation. 12.5 Point source excitation. 12.6 Other applications. Appendix 12.A: An algorithm to evaluate the geometrical radiation impedance. References. 13 Finite element modelling of poroelastic materials. 13.1 Introduction. 13.2 Displacement based formulations. 13.3 The mixed displacement-pressure formulation. 13.4 Coupling conditions. 13.5 Other formulations in terms of mixed variables. 13.6 Numerical implementation. 13.7 Dissipated power within a porous medium. 13.8 Radiation conditions. 13.9 Examples. References. Index.
'. Appendix 5.C: Calculation of the characteristic length
for a cylinder perpendicular to the direction of propagation. References. 6 Biot theory of sound propagation in porous materials having an elastic frame. 6.1 Introduction. 6.2 Stress and strain in porous materials. 6.3 Inertial forces in the biot theory. 6.4 Wave equations. 6.5 The two compressional waves and the shear wave. 6.6 Prediction of surface impedance at normal incidence for a layer of porous material backed by an impervious rigid wall. Appendix 6.A: Other representations of the Biot theory. References. 7 Point source above rigid framed porous layers. 7.1 Introduction. 7.2 Sommerfeld representation of the monopole field over a plane reflecting surface. 7.3 The complex sin
plane. 7.4 The method of steepest descent (passage path method). 7.5 Poles of the reflection coefficient. 7.6 The pole subtraction method. 7.7 Pole localization. 7.8 The modified version of the Chien and Soroka model. Appendix 7.A Evaluation of N. Appendix 7.B Evaluation of pr by the pole subtraction method. Appendix 7.C From the pole subtraction to the passage path: Locally reacting surface. References. 8 Porous frame excitation by point sources in air and by stress circular and line sources - modes of air saturated porous frames. 8.1 Introduction. 8.2 Prediction of the frame displacement. 8.3 Semi-infinite layer - Rayleigh wave. 8.4 Layer of finite thickness - modified Rayleigh wave. 8.5 Layer of finite thickness - modes and resonances. Appendix 8.A Coefficients rij and Mi,j. Appendix 8.B Double Fourier transform and Hankel transform. Appendix 8.B Appendix .C Rayleigh pole contribution. References. 9 Porous materials with perforated facings. 9.1 Introduction. 9.2 Inertial effect and flow resistance. 9.3 Impedance at normal incidence of a layered porous material covered by a perforated facing - Helmoltz resonator. 9.4 Impedance at oblique incidence of a layered porous material covered by a facing having cirular perforations. References. 10 Transversally isotropic poroelastic media. 10.1 Introduction. 10.2 Frame in vacuum. 10.3 Transversally isotropic poroelastic layer. 10.4 Waves with a given slowness component in the symmetry plane. 10.5 Sound source in air above a layer of finite thickness. 10.6 Mechanical excitation at the surface of the porous layer. 10.7 Symmetry axis different from the normal to the surface. 10.8 Rayleigh poles and Rayleigh waves. 10.9 Transfer matrix representation of transversally isotropic poroelastic media. Appendix 10.A: Coefficients Ti in Equation (10.46). Appendix 10.B: Coefficients Ai in Equation (10.97). References. 11 Modelling multilayered systems with porous materials using the transfer matrix method. 11.1 Introduction. 11.2 Transfer matrix method. 11.3 Matrix representation of classical media. 11.4 Coupling transfer matrices. 11.5 Assembling the global transfer matrix. 11.6 Calculation of the acoustic indicators. 11.7 Applications. Appendix 11.A The elements Tij of the Transfer Matrix T ]. References. 12 Extensions to the transfer matrix method. 12.1 Introduction. 12.2 Finite size correction for the transmission problem. 12.3 Finite size correction for the absorption problem. 12.4 Point load excitation. 12.5 Point source excitation. 12.6 Other applications. Appendix 12.A: An algorithm to evaluate the geometrical radiation impedance. References. 13 Finite element modelling of poroelastic materials. 13.1 Introduction. 13.2 Displacement based formulations. 13.3 The mixed displacement-pressure formulation. 13.4 Coupling conditions. 13.5 Other formulations in terms of mixed variables. 13.6 Numerical implementation. 13.7 Dissipated power within a porous medium. 13.8 Radiation conditions. 13.9 Examples. References. Index.