113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
Als Download kaufen
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
Jetzt verschenken
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
  • Format: PDF

The field of protein kinases has greatly impacted our understanding of the basic mechanisms in cell function. The field has also been a major focus of drug development that considers the broad reach of the protein kinase function under diverse conditions. One member of the kinome, protein kinase CK2, continues to emerge as a major signaling molecule involved in diverse functions in health and disease. This kinase has unique features, most notably its ubiquitous and highly conserved nature. Its vast number of potential substrates exemplifies its involvement in various functions in cells under…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 10.73MB
Produktbeschreibung
The field of protein kinases has greatly impacted our understanding of the basic mechanisms in cell function. The field has also been a major focus of drug development that considers the broad reach of the protein kinase function under diverse conditions. One member of the kinome, protein kinase CK2, continues to emerge as a major signaling molecule involved in diverse functions in health and disease. This kinase has unique features, most notably its ubiquitous and highly conserved nature. Its vast number of potential substrates exemplifies its involvement in various functions in cells under both the normal and diseased states. Of particular note is the observation that due to its ubiquitous nature, CK2 has been found to be dysregulated in all cancers that have been examined. As such, it is now being considered a potentially important target for cancer therapy.

Protein Kinase CK2 plays equally important functions in development and intracellular activities, and has a global impact on cell growth and proliferation. An additional key function of CK2 is the impact of its activity on cell death processes. Given the vast nature of its functions, CK2 has been proposed to serve as a "master regulator" of cell function. The chapters included in this work cover a wide range of topics dealing with some of the functions mentioned above, providing an important starting point for research investigators and graduate students interested in this field.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Khalil Ahmed is a Professor at the University of Minnesota, and a Senior Research Career Scientist at Minneapolis VA Health Care System, Minneapolis, Minnesota, U.S.A. He has a long history of studies on the functional biology of protein kinase CK2 in normal and neoplastic cells. He originally described the signal mediated dynamic shuttling of CK2 in the cell, and discovered the role of CK2 as a suppressor of apoptosis. His current research is focused on the mechanism of CK2 regulation of cell death. He is also studying the development of molecular therapeutic strategies using a nanomedicine approach for treatment of prostate and other cancers. Dr. Olaf-Georg Issinger is a Professor at the University of Southern Denmark, Odense, Denmark. He has been involved in the initial cloning and characterization of protein kinase CK2, a prerequisite for the elucidation of its structure in the absence and presence of specific interaction molecules. His current research focuses on the exploration of cellular signaling pathways in cell lines with respect to the role of various protein kinases using newly characterized kinase inhibitors identified by screening small chemical compound libraries. Dr. Ryszard Szyszka is a Professor at the John Paul II Catholic University of Lublin, Poland. He is head of the Department of Molecular Biology and Dean of the Faculty of Biotechnology and Environmental Sciences. His research is focused on the identification and characterization of new substrates of protein kinase CK2 from Saccharomyces cerevisiae. Further areas of interest include the structure and regulation of yeast CK2, and discovery of novel CK2 inhibitors.