Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Reviews our current understanding of the role of protein oxidation in aging and age-related diseases Protein oxidation is at the core of the aging process. Setting forth a variety of new methods and approaches, this book helps researchers conveniently by exploring the aging process and developing more effective therapies to prevent or treat age-related diseases. There have been many studies dedicated to the relationship between protein oxidation and age-related pathology; now it is possible for researchers and readers to learn new techniques as utilizing protein oxidation products as…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.84MB
- Tilman GruneProtein Oxidation and Aging (eBook, ePUB)144,99 €
- Protein and Peptide Folding, Misfolding, and Non-Folding (eBook, PDF)144,99 €
- Protein Families (eBook, PDF)127,99 €
- Virender K. SharmaOxidation of Amino Acids, Peptides, and Proteins (eBook, PDF)132,99 €
- Heterocyclic Chemistry in Drug Discovery (eBook, PDF)128,99 €
- Anthony K. CampbellIntracellular Calcium (eBook, PDF)242,99 €
- Protein Aggregation in Bacteria (eBook, PDF)117,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Seitenzahl: 516
- Erscheinungstermin: 7. November 2012
- Englisch
- ISBN-13: 9781118492994
- Artikelnr.: 37353899
- Verlag: Jossey-Bass
- Seitenzahl: 516
- Erscheinungstermin: 7. November 2012
- Englisch
- ISBN-13: 9781118492994
- Artikelnr.: 37353899
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
NO and Peroxynitrite, 25 1.1.2.7 Hypochlorous Acid, 30 1.1.3 Enzymatic Systems Playing a Role in Protein Oxidation, 31 1.1.3.1 NADPH Oxidase, 32 1.1.3.2 Lipoxygenases, 35 1.1.3.3 Protein Kinases, 35 1.1.3.4 Mixed-Function Oxidases, 36 1.1.3.5 Nitric Oxide Synthetase (NOS), 38 1.1.3.6 Myeloperoxidase, 41 1.1.3.7 Cyclooxygenase, 42 1.1.4 Protein Oxidation in Cells and Cellular Structures, 43 1.1.4.1 Protein Oxidation in Blood and Blood Cells, 43 1.1.4.2 Protein Oxidation of Glycolytic Enzymes and Mitochondria, 46 1.1.4.2.1 Glycolytic Enzymes, 48 1.1.4.2.2 Aconitase, 49 1.1.4.2.3 Carnitine Palmitoyltransferase-1, 49 1.1.4.3 Cytochrome P450 Enzymes, 49 1.1.4.4 Protein Oxidation in the Nucleus and Chromatin, 50 1.1.4.4.1 Histone Modifi cation, 50 1.1.4.5 Protein Oxidation in the Endoplasmic Reticulum, 52 1.1.4.6 Protein Oxidation in Peroxisomes, 54 1.2 Reversible Oxidative Modifi cations, 55 1.2.1 Methionine Sulfoxides and Methionine Modifi cations, 55 1.2.2 Cysteine Modifi cations and Disulfi de Bond Formation, 61 1.2.3 Surface Hydrophobicity Modifi cations, 64 1.3 Irreversible Oxidation Products, 64 1.3.1 Protein Oxidation and Enzymatic Posttranslational Modifications, 65 1.3.2 Deamidation and Transamination, 66 1.3.3 Protein Glycation and AGEs, 67 1.3.3.1 Receptor for Advanced Glycation End Products (RAGE), 75 1.3.3.2 N
-Carboxymethyllysine and N
-Carboxyethyllysine, 76 1.3.3.3 Pentosidine, 76 1.3.4 Racemization, 77 1.3.5 Nitrosylation, 77 1.3.6 Tyrosyl Radicals and Nitrotyrosines, 78 1.3.6.1 Dityrosines, 79 1.3.7 Protein Carbonyls, 80 1.3.8 Aldehyde-Protein Reactions, 81 1.3.8.1 MDA-Protein Adducts, 82 1.3.8.2 4-Hydroxy-2,3-Nonenal-Protein Adducts, 82 1.3.9 Cross-Linking of Proteins, 82 1.4 The Oxidation of Extracellular Matrix, Membrane and Cytoskeletal Proteins, 83 1.4.1 Collagen, 84 1.4.2 Elastin, 95 1.4.3 The Oxidation of Membrane Proteins, 97 1.4.4 Band 3, 97 1.4.5 Actin, 99 1.5 Mechanism and Factors Influencing the Formation of Protein Oxidation Products, 100 1.5.1 Redox Status, 101 1.5.2 Protein Turnover, 106 1.5.3 Metal-Catalyzed Oxidation (MCO), 107 1.5.4 Heat Shock Proteins, 109 1.6 Protein Aggregates: Formation and Specific Metabolic Effects, 111 1.6.1 Accumulation of Oxidized Proteins, 113 1.6.2 Lipofuscin and Ceroid, 115 1.7 Methods to Measure Protein Oxidation Products in Research Laboratories, 119 1.7.1 Determination of Methionine Sulfoxide Reduction and Methionine Oxidation, 120 1.7.2 Determination of Protein Glycation and Adducts, 121 1.7.3 Analysis of Isoaspartate Formation, 122 1.7.4 Measurement of Fragmentation, 122 1.7.5 Measurement of Tyrosine Oxidation, 123 1.7.6 Protein Carbonyl Measurement, 124 1.7.7 Radioactive Labeling Protocols for Proteolysis and Aggregation Measurements, 128 1.7.8 Standard Chromatographic Methods for the Measurement of Protein Modifi cations, 132 1.7.9 Liquid Chromatography Techniques Supported by Mass Spectrometry, 133 1.7.10 GC/MS, 134 1.7.11 Analysis of Protein-Bound 3-Nitrotyrosine by a Competitive ELISA Method, 134 1.7.12 Protein Oxidation Products as Biomarkers in Clinical Science, 135 References, 139 2 Removal of Oxidized Proteins 215 2.1 The Limited Repair of Some Oxidized Proteins, 216 2.1.1 Thiol Repair, 216 2.1.2 Methionine Sulfoxide Reductases, 219 2.2 Proteolysis, 221 2.2.1 The Proteasomal System and Its Role in the Degradation of Oxidized Proteins, 222 2.2.1.1 The Ubiquitin-Proteasome System (UPS), 222 2.2.1.2 The Components of the UPS, 222 2.2.1.2.1 The 20S Proteasome, 222 2.2.1.2.2 The Inducible Forms of the Proteasome and Their Function, 227 2.2.1.2.3 The 11S Regulator, 231 2.2.1.2.4 The 19S Regulator and the UPS, 233 2.2.1.2.5 The PA200 Regulator Protein, 238 2.2.1.2.6 Cellular Proteasome Inhibitors, 239 2.2.1.3 Low-Molecular-Weight Proteasome Inhibitors, 239 2.2.1.4 Cellular Function of the UPS, 241 2.2.1.5 The Degradation of Oxidized Proteins: A Function of the 20S Proteasome, 243 2.2.1.5.1 Early Studies on the Turnover of Oxidized Proteins, 244 2.2.1.5.2 In Vitro Studies and the Recognition of Oxidized Proteins by the Proteasome, 244 2.2.1.5.3 Cellular and In Vivo Studies of the Degradation of Oxidized Proteins, 248 2.2.1.5.4 The Inhibition of the Proteasome by Cross-Linked Oxidized Proteins and Proteasomal Regulation during Oxidative Stress, 251 2.3 The Role of Other Proteases in the Fate of Oxidized Proteins, 254 2.3.1 Lysosomal Degradation of Oxidized Proteins and the Role of Autophagy, 254 2.3.2 Mitochondrial Degradation of Oxidized Proteins and the Lon Protease, 256 2.3.3 The Uptake of Extracellular Oxidized Proteins and the Role of the Proteasome in Their Degradation, 258 2.3.4 Calpains and the Degradation of Oxidized Proteins, 259 2.4 Role of Heat Shock Proteins in Protein Degradation, 260 2.5 Conclusion, 262 References, 262 3 Protein Oxidation and Aging: Different Model Systems and Affecting Factors 295 3.1 Protein Oxidation during Aging: Lower Organisms and Cellular Model Systems, 297 3.1.1 Yeast, 297 3.1.1.1 Saccharomyces cerevisiae, 297 3.1.1.2 Schizosaccharomyces pombe, 301 3.1.2 Podospora anserina, 301 3.1.3 Bacteria, 302 3.1.3.1 Escherichia coli, 302 3.1.4 Cell Cultures, 304 3.2 Nonmammalian Model Systems and the Accumulation of Oxidized Proteins during Aging, 308 3.2.1 Caenorhabditis elegans, 308 3.2.2 Drosophila melanogaster, 310 3.2.3 Aquatic Systems, 313 3.2.4 Plants, 315 3.2.5 Amphibians, 317 3.3 Age-Related Protein Oxidation in Humans and Mammals, 317 3.3.1 Humans, 317 3.3.2 Animals, 319 3.3.2.1 Rabbits, 323 3.3.2.2 Mice, 324 3.3.2.3 Rats, 327 3.3.2.4 Gerbils, 329 3.3.2.5 Primates, 330 3.4 Inherited Factors Influencing Protein Oxidation during Aging, 331 3.4.1 Genetic Instability, Mutations, and Polymorphism, 331 3.4.2 Gender, 333 3.4.3 Vitagenes, 334 3.4.4 Signal Transduction and Transcription Factors, 335 3.4.5 Ion Channels, 340 3.5 Age-Related Protein Aggregate Formation in Model Systems, 341 3.6 Environmental Factors Affecting Healthy Aging, 342 3.6.1 UV-Induced Skin Photoaging and Skin Aging, 344 3.6.2 Pesticides, 348 3.6.3 Exercise, 349 3.6.4 Dietary Factors and Prevention Strategies, 351 3.6.4.1 Melatonin, 353 3.6.4.2 Growth Hormone, 354 3.6.4.3 Biotrace Metal Elements: Zinc, 356 3.6.4.4 Ascorbic Acid, 357 3.6.4.5 Vitamin E, 360 3.6.4.6 Carnitine and Acetyl-L-Carnitine, 361 3.6.4.7 Homocysteine, 362 3.6.4.8 Ubiquinone, Coenzyme Q10, 363 3.6.4.9 Carnosine, 363 3.6.4.10 Lipoic Acid, 364 3.6.4.11 N-Acetyl-L-Cysteine, 365 3.6.5 Pharmacological Response and Biotransformation in Aging, 365 3.6.5.1 Plant Extracts, 366 3.6.5.2 Polyphenols and Flavonoids, 366 3.6.5.3 Resveratrol, 367 3.6.5.4 AGE and ALE Inhibitors, 368 3.6.6 Caloric Restriction, 369 3.7 Repair and Degradation of Oxidized Proteins during Aging, 370 References, 372 4 Protein Oxidation in Some Age-Related Diseases 417 4.1 Protein Oxidation during Neurodegeneration and Neurological Diseases, 417 4.1.1 Brain Aging, 418 4.1.2 Alzheimer's Disease, 420 4.1.3 Parkinson's Disease, 424 4.1.4 Huntington's Disease, 425 4.1.5 Stroke, 427 4.1.6 Amyotrophic Lateral Sclerosis, 427 4.2 Protein Oxidation in Cardiac Diseases, 429 4.2.1 Ischemia-Reperfusion, 429 4.2.2 Atherosclerosis, 430 4.3 Protein Oxidation in Diabetes, 431 4.4 Protein Oxidation in Degenerative Arthritis, 434 4.5 Protein Oxidation in Muscle Wasting and Sarcopenia, 435 4.6 Protein Oxidation in Destructive Eye Diseases, 437 4.6.1 Age-Related Macular Degeneration, 437 4.6.2 Cataract, 438 4.7 Protein Oxidation in Osteoporosis, 440 4.8 Protein Oxidation in Cancer, 441 4.8.1 Proteasome Inhibitors in Cancer Therapy, 444 4.9 Other Diseases, 446 4.9.1 Premature Aging Diseases Progeria and Werner's Syndrome, 446 4.9.2 Renal Failure and Hemodialysis in Elderly People, 447 4.9.3 Obesity, 447 4.9.4 Idiopathic Pulmonary Fibrosis, 448 4.9.5 Presbycusis (Age-Related Hear Loss), 448 References, 448 List of Abbreviations 479 Index 493
NO and Peroxynitrite, 25 1.1.2.7 Hypochlorous Acid, 30 1.1.3 Enzymatic Systems Playing a Role in Protein Oxidation, 31 1.1.3.1 NADPH Oxidase, 32 1.1.3.2 Lipoxygenases, 35 1.1.3.3 Protein Kinases, 35 1.1.3.4 Mixed-Function Oxidases, 36 1.1.3.5 Nitric Oxide Synthetase (NOS), 38 1.1.3.6 Myeloperoxidase, 41 1.1.3.7 Cyclooxygenase, 42 1.1.4 Protein Oxidation in Cells and Cellular Structures, 43 1.1.4.1 Protein Oxidation in Blood and Blood Cells, 43 1.1.4.2 Protein Oxidation of Glycolytic Enzymes and Mitochondria, 46 1.1.4.2.1 Glycolytic Enzymes, 48 1.1.4.2.2 Aconitase, 49 1.1.4.2.3 Carnitine Palmitoyltransferase-1, 49 1.1.4.3 Cytochrome P450 Enzymes, 49 1.1.4.4 Protein Oxidation in the Nucleus and Chromatin, 50 1.1.4.4.1 Histone Modifi cation, 50 1.1.4.5 Protein Oxidation in the Endoplasmic Reticulum, 52 1.1.4.6 Protein Oxidation in Peroxisomes, 54 1.2 Reversible Oxidative Modifi cations, 55 1.2.1 Methionine Sulfoxides and Methionine Modifi cations, 55 1.2.2 Cysteine Modifi cations and Disulfi de Bond Formation, 61 1.2.3 Surface Hydrophobicity Modifi cations, 64 1.3 Irreversible Oxidation Products, 64 1.3.1 Protein Oxidation and Enzymatic Posttranslational Modifications, 65 1.3.2 Deamidation and Transamination, 66 1.3.3 Protein Glycation and AGEs, 67 1.3.3.1 Receptor for Advanced Glycation End Products (RAGE), 75 1.3.3.2 N
-Carboxymethyllysine and N
-Carboxyethyllysine, 76 1.3.3.3 Pentosidine, 76 1.3.4 Racemization, 77 1.3.5 Nitrosylation, 77 1.3.6 Tyrosyl Radicals and Nitrotyrosines, 78 1.3.6.1 Dityrosines, 79 1.3.7 Protein Carbonyls, 80 1.3.8 Aldehyde-Protein Reactions, 81 1.3.8.1 MDA-Protein Adducts, 82 1.3.8.2 4-Hydroxy-2,3-Nonenal-Protein Adducts, 82 1.3.9 Cross-Linking of Proteins, 82 1.4 The Oxidation of Extracellular Matrix, Membrane and Cytoskeletal Proteins, 83 1.4.1 Collagen, 84 1.4.2 Elastin, 95 1.4.3 The Oxidation of Membrane Proteins, 97 1.4.4 Band 3, 97 1.4.5 Actin, 99 1.5 Mechanism and Factors Influencing the Formation of Protein Oxidation Products, 100 1.5.1 Redox Status, 101 1.5.2 Protein Turnover, 106 1.5.3 Metal-Catalyzed Oxidation (MCO), 107 1.5.4 Heat Shock Proteins, 109 1.6 Protein Aggregates: Formation and Specific Metabolic Effects, 111 1.6.1 Accumulation of Oxidized Proteins, 113 1.6.2 Lipofuscin and Ceroid, 115 1.7 Methods to Measure Protein Oxidation Products in Research Laboratories, 119 1.7.1 Determination of Methionine Sulfoxide Reduction and Methionine Oxidation, 120 1.7.2 Determination of Protein Glycation and Adducts, 121 1.7.3 Analysis of Isoaspartate Formation, 122 1.7.4 Measurement of Fragmentation, 122 1.7.5 Measurement of Tyrosine Oxidation, 123 1.7.6 Protein Carbonyl Measurement, 124 1.7.7 Radioactive Labeling Protocols for Proteolysis and Aggregation Measurements, 128 1.7.8 Standard Chromatographic Methods for the Measurement of Protein Modifi cations, 132 1.7.9 Liquid Chromatography Techniques Supported by Mass Spectrometry, 133 1.7.10 GC/MS, 134 1.7.11 Analysis of Protein-Bound 3-Nitrotyrosine by a Competitive ELISA Method, 134 1.7.12 Protein Oxidation Products as Biomarkers in Clinical Science, 135 References, 139 2 Removal of Oxidized Proteins 215 2.1 The Limited Repair of Some Oxidized Proteins, 216 2.1.1 Thiol Repair, 216 2.1.2 Methionine Sulfoxide Reductases, 219 2.2 Proteolysis, 221 2.2.1 The Proteasomal System and Its Role in the Degradation of Oxidized Proteins, 222 2.2.1.1 The Ubiquitin-Proteasome System (UPS), 222 2.2.1.2 The Components of the UPS, 222 2.2.1.2.1 The 20S Proteasome, 222 2.2.1.2.2 The Inducible Forms of the Proteasome and Their Function, 227 2.2.1.2.3 The 11S Regulator, 231 2.2.1.2.4 The 19S Regulator and the UPS, 233 2.2.1.2.5 The PA200 Regulator Protein, 238 2.2.1.2.6 Cellular Proteasome Inhibitors, 239 2.2.1.3 Low-Molecular-Weight Proteasome Inhibitors, 239 2.2.1.4 Cellular Function of the UPS, 241 2.2.1.5 The Degradation of Oxidized Proteins: A Function of the 20S Proteasome, 243 2.2.1.5.1 Early Studies on the Turnover of Oxidized Proteins, 244 2.2.1.5.2 In Vitro Studies and the Recognition of Oxidized Proteins by the Proteasome, 244 2.2.1.5.3 Cellular and In Vivo Studies of the Degradation of Oxidized Proteins, 248 2.2.1.5.4 The Inhibition of the Proteasome by Cross-Linked Oxidized Proteins and Proteasomal Regulation during Oxidative Stress, 251 2.3 The Role of Other Proteases in the Fate of Oxidized Proteins, 254 2.3.1 Lysosomal Degradation of Oxidized Proteins and the Role of Autophagy, 254 2.3.2 Mitochondrial Degradation of Oxidized Proteins and the Lon Protease, 256 2.3.3 The Uptake of Extracellular Oxidized Proteins and the Role of the Proteasome in Their Degradation, 258 2.3.4 Calpains and the Degradation of Oxidized Proteins, 259 2.4 Role of Heat Shock Proteins in Protein Degradation, 260 2.5 Conclusion, 262 References, 262 3 Protein Oxidation and Aging: Different Model Systems and Affecting Factors 295 3.1 Protein Oxidation during Aging: Lower Organisms and Cellular Model Systems, 297 3.1.1 Yeast, 297 3.1.1.1 Saccharomyces cerevisiae, 297 3.1.1.2 Schizosaccharomyces pombe, 301 3.1.2 Podospora anserina, 301 3.1.3 Bacteria, 302 3.1.3.1 Escherichia coli, 302 3.1.4 Cell Cultures, 304 3.2 Nonmammalian Model Systems and the Accumulation of Oxidized Proteins during Aging, 308 3.2.1 Caenorhabditis elegans, 308 3.2.2 Drosophila melanogaster, 310 3.2.3 Aquatic Systems, 313 3.2.4 Plants, 315 3.2.5 Amphibians, 317 3.3 Age-Related Protein Oxidation in Humans and Mammals, 317 3.3.1 Humans, 317 3.3.2 Animals, 319 3.3.2.1 Rabbits, 323 3.3.2.2 Mice, 324 3.3.2.3 Rats, 327 3.3.2.4 Gerbils, 329 3.3.2.5 Primates, 330 3.4 Inherited Factors Influencing Protein Oxidation during Aging, 331 3.4.1 Genetic Instability, Mutations, and Polymorphism, 331 3.4.2 Gender, 333 3.4.3 Vitagenes, 334 3.4.4 Signal Transduction and Transcription Factors, 335 3.4.5 Ion Channels, 340 3.5 Age-Related Protein Aggregate Formation in Model Systems, 341 3.6 Environmental Factors Affecting Healthy Aging, 342 3.6.1 UV-Induced Skin Photoaging and Skin Aging, 344 3.6.2 Pesticides, 348 3.6.3 Exercise, 349 3.6.4 Dietary Factors and Prevention Strategies, 351 3.6.4.1 Melatonin, 353 3.6.4.2 Growth Hormone, 354 3.6.4.3 Biotrace Metal Elements: Zinc, 356 3.6.4.4 Ascorbic Acid, 357 3.6.4.5 Vitamin E, 360 3.6.4.6 Carnitine and Acetyl-L-Carnitine, 361 3.6.4.7 Homocysteine, 362 3.6.4.8 Ubiquinone, Coenzyme Q10, 363 3.6.4.9 Carnosine, 363 3.6.4.10 Lipoic Acid, 364 3.6.4.11 N-Acetyl-L-Cysteine, 365 3.6.5 Pharmacological Response and Biotransformation in Aging, 365 3.6.5.1 Plant Extracts, 366 3.6.5.2 Polyphenols and Flavonoids, 366 3.6.5.3 Resveratrol, 367 3.6.5.4 AGE and ALE Inhibitors, 368 3.6.6 Caloric Restriction, 369 3.7 Repair and Degradation of Oxidized Proteins during Aging, 370 References, 372 4 Protein Oxidation in Some Age-Related Diseases 417 4.1 Protein Oxidation during Neurodegeneration and Neurological Diseases, 417 4.1.1 Brain Aging, 418 4.1.2 Alzheimer's Disease, 420 4.1.3 Parkinson's Disease, 424 4.1.4 Huntington's Disease, 425 4.1.5 Stroke, 427 4.1.6 Amyotrophic Lateral Sclerosis, 427 4.2 Protein Oxidation in Cardiac Diseases, 429 4.2.1 Ischemia-Reperfusion, 429 4.2.2 Atherosclerosis, 430 4.3 Protein Oxidation in Diabetes, 431 4.4 Protein Oxidation in Degenerative Arthritis, 434 4.5 Protein Oxidation in Muscle Wasting and Sarcopenia, 435 4.6 Protein Oxidation in Destructive Eye Diseases, 437 4.6.1 Age-Related Macular Degeneration, 437 4.6.2 Cataract, 438 4.7 Protein Oxidation in Osteoporosis, 440 4.8 Protein Oxidation in Cancer, 441 4.8.1 Proteasome Inhibitors in Cancer Therapy, 444 4.9 Other Diseases, 446 4.9.1 Premature Aging Diseases Progeria and Werner's Syndrome, 446 4.9.2 Renal Failure and Hemodialysis in Elderly People, 447 4.9.3 Obesity, 447 4.9.4 Idiopathic Pulmonary Fibrosis, 448 4.9.5 Presbycusis (Age-Related Hear Loss), 448 References, 448 List of Abbreviations 479 Index 493
"The format and compartmentalised writing style make this an excellent compendium of knowledge for any researcher interested in assessing our state of knowledge of protein oxidation and ageing. It is easy to find out about the current state of knowledge about a specific reaction, product, method, and/or disease and follow this up by accessing the extensive list of references." (Chemistry & Industry, 1 July 2013)