Proton Therapy Physics, Second Edition (eBook, PDF)
Redaktion: Paganetti, Harald
43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
43,95 €
Als Download kaufen
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
22 °P sammeln
Proton Therapy Physics, Second Edition (eBook, PDF)
Redaktion: Paganetti, Harald
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Expanding on the highly successful first edition , this second edition has been completely restructured and updated throughout, and includes several new chapters. It is suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, providing an in-depth overview of the physics of this radiation therapy modality.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 37.95MB
Andere Kunden interessierten sich auch für
- Proton Therapy Physics, Second Edition (eBook, ePUB)43,95 €
- Gavin PoludniowskiCalculating X-ray Tube Spectra (eBook, PDF)48,95 €
- Biomedical Photonics for Diabetes Research (eBook, PDF)48,95 €
- Bioelectromagnetism (eBook, PDF)48,95 €
- Luminescent Thermometers (eBook, PDF)52,95 €
- Diagnostic Ultrasound, Third Edition (eBook, PDF)78,95 €
- Introduction to Medical Physics (eBook, PDF)48,95 €
-
-
-
Expanding on the highly successful first edition, this second edition has been completely restructured and updated throughout, and includes several new chapters. It is suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, providing an in-depth overview of the physics of this radiation therapy modality.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 772
- Erscheinungstermin: 19. November 2018
- Englisch
- ISBN-13: 9781351855754
- Artikelnr.: 54673046
- Verlag: Taylor & Francis
- Seitenzahl: 772
- Erscheinungstermin: 19. November 2018
- Englisch
- ISBN-13: 9781351855754
- Artikelnr.: 54673046
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Harald Paganetti received his PhD in nuclear physics from the Rheinische-Friedrich-Wilhelms University in Bonn, Germany in 1992. He subsequently entered the field of medical physics and later joined the physics team at Massachusetts General Hospital in 1998. He is currently the Director of Physics Research for Radiation Oncology at Massachusetts General Hospital and a Professor of Radiation Oncology at Harvard Medical School. He has authored and co-authored more than 200 peer-reviewed publications and has edited two books on Proton Therapy. He has made significant contributions to the field of radiation oncology physics, many of which have found their way into clinical practice. Particularly, he is a pioneer in advanced Monte Carlo dose calculations for proton therapy treatment planning, which allowed the reduction of treatment planning margins for many patients, and in four-dimensional dose calculation aiming at a better understanding of motion effects when using radiation therapy for moving targets. He is considered the world expert on the relative biological effectiveness of proton beams and has had a significant impact in biological effect modeling. In 2014 he received the Excellence in Mentoring Award from Harvard Medical School recognizing his teaching and mentoring activities for junior faculty and students. He serves on various committees mainly for the American Association of Physicists in Medicine (AAPM), for which he was named Fellow in 2014, and American Society for Therapeutic Radiology and Oncology (ASTRO). He is also a member of the National Council on Radiation Protection and Measurements (NCRP).
1. Proton Therapy: History and Rational 2. Physics of Proton Interactions
in Matter 3. Proton Accelerators 4. Characteristics of Clinical Proton
Beams 5. Beam Delivery Using Passive Scattering 6. Particle Beam Scanning
7. Secondary Radiation Production and Shielding at Proton Therapy
Facilities 8. Monte Carlo Simulations 9. Detectors and Relative Dosimetry
10. Reference Dosimetry and Primary Standards 11. Acceptance Testing and
Commissioninn 12. Quality Assurance 13. Monitor Unit Calibration 14. Dose
Calculation Algorithms 15. Physics of Treatment Planning for Single-Field
Uniform Dose 16. Physics of Treatment Planning Using Scanned Beams 17.
Precision and Uncertainties in Planning and Delivery 18. Precision and
uncertainties for moving targets 19. Treatment-Planning Optimization 20.
Proton Image Guidance 21. In Vivo Dose Verification 22. The Physics of
Proton Biology 23. Fully Exploiting the Benefits of Protons: Using Risk
Models for Normal Tissue Complications in Treatment Optimization
in Matter 3. Proton Accelerators 4. Characteristics of Clinical Proton
Beams 5. Beam Delivery Using Passive Scattering 6. Particle Beam Scanning
7. Secondary Radiation Production and Shielding at Proton Therapy
Facilities 8. Monte Carlo Simulations 9. Detectors and Relative Dosimetry
10. Reference Dosimetry and Primary Standards 11. Acceptance Testing and
Commissioninn 12. Quality Assurance 13. Monitor Unit Calibration 14. Dose
Calculation Algorithms 15. Physics of Treatment Planning for Single-Field
Uniform Dose 16. Physics of Treatment Planning Using Scanned Beams 17.
Precision and Uncertainties in Planning and Delivery 18. Precision and
uncertainties for moving targets 19. Treatment-Planning Optimization 20.
Proton Image Guidance 21. In Vivo Dose Verification 22. The Physics of
Proton Biology 23. Fully Exploiting the Benefits of Protons: Using Risk
Models for Normal Tissue Complications in Treatment Optimization
1. Proton Therapy: History and Rational 2. Physics of Proton Interactions
in Matter 3. Proton Accelerators 4. Characteristics of Clinical Proton
Beams 5. Beam Delivery Using Passive Scattering 6. Particle Beam Scanning
7. Secondary Radiation Production and Shielding at Proton Therapy
Facilities 8. Monte Carlo Simulations 9. Detectors and Relative Dosimetry
10. Reference Dosimetry and Primary Standards 11. Acceptance Testing and
Commissioninn 12. Quality Assurance 13. Monitor Unit Calibration 14. Dose
Calculation Algorithms 15. Physics of Treatment Planning for Single-Field
Uniform Dose 16. Physics of Treatment Planning Using Scanned Beams 17.
Precision and Uncertainties in Planning and Delivery 18. Precision and
uncertainties for moving targets 19. Treatment-Planning Optimization 20.
Proton Image Guidance 21. In Vivo Dose Verification 22. The Physics of
Proton Biology 23. Fully Exploiting the Benefits of Protons: Using Risk
Models for Normal Tissue Complications in Treatment Optimization
in Matter 3. Proton Accelerators 4. Characteristics of Clinical Proton
Beams 5. Beam Delivery Using Passive Scattering 6. Particle Beam Scanning
7. Secondary Radiation Production and Shielding at Proton Therapy
Facilities 8. Monte Carlo Simulations 9. Detectors and Relative Dosimetry
10. Reference Dosimetry and Primary Standards 11. Acceptance Testing and
Commissioninn 12. Quality Assurance 13. Monitor Unit Calibration 14. Dose
Calculation Algorithms 15. Physics of Treatment Planning for Single-Field
Uniform Dose 16. Physics of Treatment Planning Using Scanned Beams 17.
Precision and Uncertainties in Planning and Delivery 18. Precision and
uncertainties for moving targets 19. Treatment-Planning Optimization 20.
Proton Image Guidance 21. In Vivo Dose Verification 22. The Physics of
Proton Biology 23. Fully Exploiting the Benefits of Protons: Using Risk
Models for Normal Tissue Complications in Treatment Optimization