124,99 €
Statt 153,81 €**
124,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
0 °P sammeln
124,99 €
Statt 153,81 €**
124,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Als Download kaufen
Statt 153,81 €****
124,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
Statt 153,81 €****
124,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book provides an overview of pyroelectric materials and their devices for applications in sensing, energy harvesting and fusion research, complemented by the physical fundamentals of dielectric materials in general and pyroelectric materials in particular.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 76.45MB
Andere Kunden interessierten sich auch für
- Ashim Kumar BainPyroelectric Materials (eBook, PDF)124,99 €
- Van der Waals Heterostructures (eBook, ePUB)133,99 €
- 2D Functional Nanomaterials (eBook, ePUB)144,99 €
- Yang XuGraphene for Post-Moore Silicon Optoelectronics (eBook, ePUB)115,99 €
- Ashim Kumar BainFerroelectrics (eBook, ePUB)142,99 €
- Jing-Feng LiLead-Free Piezoelectric Materials (eBook, ePUB)124,99 €
- Functional Materials from Colloidal Self-assembly (eBook, ePUB)183,99 €
-
-
-
The book provides an overview of pyroelectric materials and their devices for applications in sensing, energy harvesting and fusion research, complemented by the physical fundamentals of dielectric materials in general and pyroelectric materials in particular.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-VCH
- Seitenzahl: 256
- Erscheinungstermin: 3. Oktober 2022
- Englisch
- ISBN-13: 9783527839735
- Artikelnr.: 66253584
- Verlag: Wiley-VCH
- Seitenzahl: 256
- Erscheinungstermin: 3. Oktober 2022
- Englisch
- ISBN-13: 9783527839735
- Artikelnr.: 66253584
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Ashim Kumar Bain, PhD, is a Former Research Fellow at the School of Electronic, Electrical and System Engineering, University of Birmingham, UK. Dr. Ashim Kumar Bain received his M.Sc. (Physics) degree in 1989 from Rajshahi University, Bangladesh, and his Ph.D. (Materials Science) degree from Dniepropetrovsk State University, Ukraine, in 1994. He was a postdoctoral research fellow (1995-1998) at the Indian Institute of Technology Kanpur, India. Prem Chand, PhD, is Professor at the Department of Physics, Indian Institute of Technology Kanpur, India. He has authored more than hundred scientific publications several review articles and two invited book chapters on ferroelectrics.
1 Fundamentals of Dielectrics
1.1 Dielectrics
1.1.1 Polarization of Dielectrics
1.1.2 Dispersion of Dielectric Polarization
1.1.2.1 Electronic Polarization
1.1.2.2 Ionic Polarization
1.1.2.3 Orientation Polarization
1.1.2.4 Space Charge Polarization
1.1.3 Dielectric relaxation
1.1.4 Debye relaxation
1.1.5 Molecular Theory of Induced Charges in a Dielectric
1.1.6: Capacitance of a Parallel Plate Capacitor
1.1.7 Electric displacement field, Dielectric constant, and Electric susceptibility
1.1.8 Local Field in a Dielectric
1.1.8.1 Lorentz field, E2
1.1.8.2 Field of dipoles inside cavity, E3
1.1.9 Dielectrics Losses
1.1.9.1 Dielectric Loss Angle
1.1.9.2 Total and Specific Dielectric Losses
1.1.10: Dielectrics Breakdown
2 Pyroelectricity
2.1 Introduction
2.2 History of pyroelectricity
2.3 Theory of Pyroelectricity
2.4 Simple model of pyroelectric effect
2.5 Pyroelectric crystal symmetry
2.6 Piezoelectricity
2.7 Ferroelectricity
2.7.1 Ferroelectric Phase Transitions
2.7.2 Ferroelectric Domains
2.7.3 Ferroelectric Domain Wall Motion
2.7.4 Soft mode
3 Pyroelectric materials and Applications
3.1 Introduction
3.2 Theory of Pyroelectric Detectors
3.3 Material Figure-of-Merits
3.4 Classification of pyroelectric materials
3.4.1 Single crystals
3.4.1.1 Triglycine sulphate (TGS)
3.4.1.2 Lithium tantalate (LT) and Lithium niobate (LN)
3.4.1.3 Barium strontium titanate (BST)
3.4.1.4 Strontium barium niobite (SBN)
3.4.2 Perovskite Ceramics
3.4.2.1 Modified lead zirconate (PZ)
3.4.2.2 Modified lead titanate (PT)
3.4.3 Polymers
3.4.4 Ceramic-polymer composites
3.4.5 Lead-free ceramics
3.4.6 Other pyroelectric materials
3.4.6.1 Aluminium nitride (AlN)
3.4.6.2 Gallium nitride (GaN)
3.4.6.3 Zinc oxide (ZnO)
4 Pyroelectric Infrared Detectors
4.1 Introduction
4.2 Device configurations
4.2.1 Thick film detectors
4.2.2 Thin film detectors
4.2.3 Hybrid focal plane array detector
4.2.4 Linear array detector
4.2.5 Periodic domain TFLTTM detector
4.2.6 Terahertz thermal detector
4.2.7 PVDF polymer detector
4.2.8 TFP polymer detector
4.2.9 TADPh polymer detector
4.2.10 Integrated resonant absorber pyroelectric detector
4.2.11 Resonant IR detector
4.2.12: Plasmonic IR detector
4.2.13: Graphene pyroelectric bolometer
5 Pyroelectric Energy Harvesting
5.1 Introduction
5.2 Theory of Pyroelectric Energy harvesting
5.3 Pyroelectricity in Ferroelectric Materials
5.3.1 Thermodynamic Cycles of PyEH
5.3.1 (a) Carnot Cycle
5.3.1 (b) Ericsson Cycle
5.3.1 (c) Olsen Cycle
5.4 Pyroelectric Generators
5.5 Pyroelectric Nanogenerators
5.5.1 Polymer Based Pyroelectric Nanogenerators
5.5.1.1 PyNGs Driven by Various Environmental Conditions
5.5.1.2 Development of Pyroelectric Materials
5.5.1.3 Wearable Pyroelectric Nanogenerators
5.5.1.4 Hybrid Pyroelectric Nanogenerators
5.5.2 Ceramic Based Pyroelectric Nanogenerators
5.5.2.1 ZnO based pyroelectric Nanogenerators
5.5.2.2 PZT based pyroelectric Nanogenerators
5.5.2.3 Lead-free Ceramic based pyroelectric Nanogenerators
5.5.3 Thermal nanophotonic- pyroelectric nanogenerator
5.5.4 Challenges and Perspectives of Pyroelectric nanogenerators
6 Pyroelectric fusion
6.1 Introduction
6.2 History of Pyroelectric Fusion
6.3 Pyroelectric neutron generators
6.4 Pyroelectric X-ray generators
1.1 Dielectrics
1.1.1 Polarization of Dielectrics
1.1.2 Dispersion of Dielectric Polarization
1.1.2.1 Electronic Polarization
1.1.2.2 Ionic Polarization
1.1.2.3 Orientation Polarization
1.1.2.4 Space Charge Polarization
1.1.3 Dielectric relaxation
1.1.4 Debye relaxation
1.1.5 Molecular Theory of Induced Charges in a Dielectric
1.1.6: Capacitance of a Parallel Plate Capacitor
1.1.7 Electric displacement field, Dielectric constant, and Electric susceptibility
1.1.8 Local Field in a Dielectric
1.1.8.1 Lorentz field, E2
1.1.8.2 Field of dipoles inside cavity, E3
1.1.9 Dielectrics Losses
1.1.9.1 Dielectric Loss Angle
1.1.9.2 Total and Specific Dielectric Losses
1.1.10: Dielectrics Breakdown
2 Pyroelectricity
2.1 Introduction
2.2 History of pyroelectricity
2.3 Theory of Pyroelectricity
2.4 Simple model of pyroelectric effect
2.5 Pyroelectric crystal symmetry
2.6 Piezoelectricity
2.7 Ferroelectricity
2.7.1 Ferroelectric Phase Transitions
2.7.2 Ferroelectric Domains
2.7.3 Ferroelectric Domain Wall Motion
2.7.4 Soft mode
3 Pyroelectric materials and Applications
3.1 Introduction
3.2 Theory of Pyroelectric Detectors
3.3 Material Figure-of-Merits
3.4 Classification of pyroelectric materials
3.4.1 Single crystals
3.4.1.1 Triglycine sulphate (TGS)
3.4.1.2 Lithium tantalate (LT) and Lithium niobate (LN)
3.4.1.3 Barium strontium titanate (BST)
3.4.1.4 Strontium barium niobite (SBN)
3.4.2 Perovskite Ceramics
3.4.2.1 Modified lead zirconate (PZ)
3.4.2.2 Modified lead titanate (PT)
3.4.3 Polymers
3.4.4 Ceramic-polymer composites
3.4.5 Lead-free ceramics
3.4.6 Other pyroelectric materials
3.4.6.1 Aluminium nitride (AlN)
3.4.6.2 Gallium nitride (GaN)
3.4.6.3 Zinc oxide (ZnO)
4 Pyroelectric Infrared Detectors
4.1 Introduction
4.2 Device configurations
4.2.1 Thick film detectors
4.2.2 Thin film detectors
4.2.3 Hybrid focal plane array detector
4.2.4 Linear array detector
4.2.5 Periodic domain TFLTTM detector
4.2.6 Terahertz thermal detector
4.2.7 PVDF polymer detector
4.2.8 TFP polymer detector
4.2.9 TADPh polymer detector
4.2.10 Integrated resonant absorber pyroelectric detector
4.2.11 Resonant IR detector
4.2.12: Plasmonic IR detector
4.2.13: Graphene pyroelectric bolometer
5 Pyroelectric Energy Harvesting
5.1 Introduction
5.2 Theory of Pyroelectric Energy harvesting
5.3 Pyroelectricity in Ferroelectric Materials
5.3.1 Thermodynamic Cycles of PyEH
5.3.1 (a) Carnot Cycle
5.3.1 (b) Ericsson Cycle
5.3.1 (c) Olsen Cycle
5.4 Pyroelectric Generators
5.5 Pyroelectric Nanogenerators
5.5.1 Polymer Based Pyroelectric Nanogenerators
5.5.1.1 PyNGs Driven by Various Environmental Conditions
5.5.1.2 Development of Pyroelectric Materials
5.5.1.3 Wearable Pyroelectric Nanogenerators
5.5.1.4 Hybrid Pyroelectric Nanogenerators
5.5.2 Ceramic Based Pyroelectric Nanogenerators
5.5.2.1 ZnO based pyroelectric Nanogenerators
5.5.2.2 PZT based pyroelectric Nanogenerators
5.5.2.3 Lead-free Ceramic based pyroelectric Nanogenerators
5.5.3 Thermal nanophotonic- pyroelectric nanogenerator
5.5.4 Challenges and Perspectives of Pyroelectric nanogenerators
6 Pyroelectric fusion
6.1 Introduction
6.2 History of Pyroelectric Fusion
6.3 Pyroelectric neutron generators
6.4 Pyroelectric X-ray generators
1 Fundamentals of Dielectrics
1.1 Dielectrics
1.1.1 Polarization of Dielectrics
1.1.2 Dispersion of Dielectric Polarization
1.1.2.1 Electronic Polarization
1.1.2.2 Ionic Polarization
1.1.2.3 Orientation Polarization
1.1.2.4 Space Charge Polarization
1.1.3 Dielectric relaxation
1.1.4 Debye relaxation
1.1.5 Molecular Theory of Induced Charges in a Dielectric
1.1.6: Capacitance of a Parallel Plate Capacitor
1.1.7 Electric displacement field, Dielectric constant, and Electric susceptibility
1.1.8 Local Field in a Dielectric
1.1.8.1 Lorentz field, E2
1.1.8.2 Field of dipoles inside cavity, E3
1.1.9 Dielectrics Losses
1.1.9.1 Dielectric Loss Angle
1.1.9.2 Total and Specific Dielectric Losses
1.1.10: Dielectrics Breakdown
2 Pyroelectricity
2.1 Introduction
2.2 History of pyroelectricity
2.3 Theory of Pyroelectricity
2.4 Simple model of pyroelectric effect
2.5 Pyroelectric crystal symmetry
2.6 Piezoelectricity
2.7 Ferroelectricity
2.7.1 Ferroelectric Phase Transitions
2.7.2 Ferroelectric Domains
2.7.3 Ferroelectric Domain Wall Motion
2.7.4 Soft mode
3 Pyroelectric materials and Applications
3.1 Introduction
3.2 Theory of Pyroelectric Detectors
3.3 Material Figure-of-Merits
3.4 Classification of pyroelectric materials
3.4.1 Single crystals
3.4.1.1 Triglycine sulphate (TGS)
3.4.1.2 Lithium tantalate (LT) and Lithium niobate (LN)
3.4.1.3 Barium strontium titanate (BST)
3.4.1.4 Strontium barium niobite (SBN)
3.4.2 Perovskite Ceramics
3.4.2.1 Modified lead zirconate (PZ)
3.4.2.2 Modified lead titanate (PT)
3.4.3 Polymers
3.4.4 Ceramic-polymer composites
3.4.5 Lead-free ceramics
3.4.6 Other pyroelectric materials
3.4.6.1 Aluminium nitride (AlN)
3.4.6.2 Gallium nitride (GaN)
3.4.6.3 Zinc oxide (ZnO)
4 Pyroelectric Infrared Detectors
4.1 Introduction
4.2 Device configurations
4.2.1 Thick film detectors
4.2.2 Thin film detectors
4.2.3 Hybrid focal plane array detector
4.2.4 Linear array detector
4.2.5 Periodic domain TFLTTM detector
4.2.6 Terahertz thermal detector
4.2.7 PVDF polymer detector
4.2.8 TFP polymer detector
4.2.9 TADPh polymer detector
4.2.10 Integrated resonant absorber pyroelectric detector
4.2.11 Resonant IR detector
4.2.12: Plasmonic IR detector
4.2.13: Graphene pyroelectric bolometer
5 Pyroelectric Energy Harvesting
5.1 Introduction
5.2 Theory of Pyroelectric Energy harvesting
5.3 Pyroelectricity in Ferroelectric Materials
5.3.1 Thermodynamic Cycles of PyEH
5.3.1 (a) Carnot Cycle
5.3.1 (b) Ericsson Cycle
5.3.1 (c) Olsen Cycle
5.4 Pyroelectric Generators
5.5 Pyroelectric Nanogenerators
5.5.1 Polymer Based Pyroelectric Nanogenerators
5.5.1.1 PyNGs Driven by Various Environmental Conditions
5.5.1.2 Development of Pyroelectric Materials
5.5.1.3 Wearable Pyroelectric Nanogenerators
5.5.1.4 Hybrid Pyroelectric Nanogenerators
5.5.2 Ceramic Based Pyroelectric Nanogenerators
5.5.2.1 ZnO based pyroelectric Nanogenerators
5.5.2.2 PZT based pyroelectric Nanogenerators
5.5.2.3 Lead-free Ceramic based pyroelectric Nanogenerators
5.5.3 Thermal nanophotonic- pyroelectric nanogenerator
5.5.4 Challenges and Perspectives of Pyroelectric nanogenerators
6 Pyroelectric fusion
6.1 Introduction
6.2 History of Pyroelectric Fusion
6.3 Pyroelectric neutron generators
6.4 Pyroelectric X-ray generators
1.1 Dielectrics
1.1.1 Polarization of Dielectrics
1.1.2 Dispersion of Dielectric Polarization
1.1.2.1 Electronic Polarization
1.1.2.2 Ionic Polarization
1.1.2.3 Orientation Polarization
1.1.2.4 Space Charge Polarization
1.1.3 Dielectric relaxation
1.1.4 Debye relaxation
1.1.5 Molecular Theory of Induced Charges in a Dielectric
1.1.6: Capacitance of a Parallel Plate Capacitor
1.1.7 Electric displacement field, Dielectric constant, and Electric susceptibility
1.1.8 Local Field in a Dielectric
1.1.8.1 Lorentz field, E2
1.1.8.2 Field of dipoles inside cavity, E3
1.1.9 Dielectrics Losses
1.1.9.1 Dielectric Loss Angle
1.1.9.2 Total and Specific Dielectric Losses
1.1.10: Dielectrics Breakdown
2 Pyroelectricity
2.1 Introduction
2.2 History of pyroelectricity
2.3 Theory of Pyroelectricity
2.4 Simple model of pyroelectric effect
2.5 Pyroelectric crystal symmetry
2.6 Piezoelectricity
2.7 Ferroelectricity
2.7.1 Ferroelectric Phase Transitions
2.7.2 Ferroelectric Domains
2.7.3 Ferroelectric Domain Wall Motion
2.7.4 Soft mode
3 Pyroelectric materials and Applications
3.1 Introduction
3.2 Theory of Pyroelectric Detectors
3.3 Material Figure-of-Merits
3.4 Classification of pyroelectric materials
3.4.1 Single crystals
3.4.1.1 Triglycine sulphate (TGS)
3.4.1.2 Lithium tantalate (LT) and Lithium niobate (LN)
3.4.1.3 Barium strontium titanate (BST)
3.4.1.4 Strontium barium niobite (SBN)
3.4.2 Perovskite Ceramics
3.4.2.1 Modified lead zirconate (PZ)
3.4.2.2 Modified lead titanate (PT)
3.4.3 Polymers
3.4.4 Ceramic-polymer composites
3.4.5 Lead-free ceramics
3.4.6 Other pyroelectric materials
3.4.6.1 Aluminium nitride (AlN)
3.4.6.2 Gallium nitride (GaN)
3.4.6.3 Zinc oxide (ZnO)
4 Pyroelectric Infrared Detectors
4.1 Introduction
4.2 Device configurations
4.2.1 Thick film detectors
4.2.2 Thin film detectors
4.2.3 Hybrid focal plane array detector
4.2.4 Linear array detector
4.2.5 Periodic domain TFLTTM detector
4.2.6 Terahertz thermal detector
4.2.7 PVDF polymer detector
4.2.8 TFP polymer detector
4.2.9 TADPh polymer detector
4.2.10 Integrated resonant absorber pyroelectric detector
4.2.11 Resonant IR detector
4.2.12: Plasmonic IR detector
4.2.13: Graphene pyroelectric bolometer
5 Pyroelectric Energy Harvesting
5.1 Introduction
5.2 Theory of Pyroelectric Energy harvesting
5.3 Pyroelectricity in Ferroelectric Materials
5.3.1 Thermodynamic Cycles of PyEH
5.3.1 (a) Carnot Cycle
5.3.1 (b) Ericsson Cycle
5.3.1 (c) Olsen Cycle
5.4 Pyroelectric Generators
5.5 Pyroelectric Nanogenerators
5.5.1 Polymer Based Pyroelectric Nanogenerators
5.5.1.1 PyNGs Driven by Various Environmental Conditions
5.5.1.2 Development of Pyroelectric Materials
5.5.1.3 Wearable Pyroelectric Nanogenerators
5.5.1.4 Hybrid Pyroelectric Nanogenerators
5.5.2 Ceramic Based Pyroelectric Nanogenerators
5.5.2.1 ZnO based pyroelectric Nanogenerators
5.5.2.2 PZT based pyroelectric Nanogenerators
5.5.2.3 Lead-free Ceramic based pyroelectric Nanogenerators
5.5.3 Thermal nanophotonic- pyroelectric nanogenerator
5.5.4 Challenges and Perspectives of Pyroelectric nanogenerators
6 Pyroelectric fusion
6.1 Introduction
6.2 History of Pyroelectric Fusion
6.3 Pyroelectric neutron generators
6.4 Pyroelectric X-ray generators