Following the Python basics, the course explores powerful libraries such as NumPy and Pandas for efficient data handling and manipulation. It then delves into statistical concepts, providing the necessary background for understanding data distributions and analytical methods. The course culminates in data visualization techniques using Matplotlib and Seaborn, demonstrating how to effectively communicate insights through graphical representations.
Throughout the course, numerous code samples and practical examples are provided, reinforcing learning and offering hands-on experience. Companion files with source code and figures are available online, supporting the learning journey. This comprehensive guide equips both beginners and seasoned professionals with the skills needed to excel in data analytics.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.