Unlike conventional textbooks, it is based on Markdown and uses full-color printing and a code-centric approach to highlight the 3C principles in data science: creative design of data solutions, curiosity about the data lifecycle, and critical thinking regarding data insights. Q&A-based knowledge maps, tips and suggestions, notes, as well as warnings and cautions are employed to explain the key points, difficulties, and common mistakes in Python programming for data science. In addition, it includes suggestions for further reading.
This textbook provides an open-source community via GitHub, and the course materials are licensed for free use under the following license: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.