149,79 €
inkl. MwSt.
Sofort per Download lieferbar
  • Format: PDF

This book provides energy efficiency quantitative analysis and optimal methods for discrete manufacturing systems from the perspective of global optimization. In order to analyze and optimize energy efficiency for discrete manufacturing systems, it uses real-time access to energy consumption information and models of the energy consumption, and constructs an energy efficiency quantitative index system. Based on the rough set and analytic hierarchy process, it also proposes a principal component quantitative analysis and a combined energy efficiency quantitative analysis. In turn, the book…mehr

Produktbeschreibung
This book provides energy efficiency quantitative analysis and optimal methods for discrete manufacturing systems from the perspective of global optimization. In order to analyze and optimize energy efficiency for discrete manufacturing systems, it uses real-time access to energy consumption information and models of the energy consumption, and constructs an energy efficiency quantitative index system. Based on the rough set and analytic hierarchy process, it also proposes a principal component quantitative analysis and a combined energy efficiency quantitative analysis. In turn, the book addresses the design and development of quantitative analysis systems. To save energy consumption on the basis of energy efficiency analysis, it presents several optimal control strategies, including one for single-machine equipment, an integrated approach based on RWA-MOPSO, and one for production energy efficiency based on a teaching and learning optimal algorithm. Given its scope, the book offers a valuable guide for students, teachers, engineers and researchers in the field of discrete manufacturing systems.
Autorenporträt
Yan Wang received her Ph.D. degree from Nanjing University of Science and Technology, China, in 2006. She is currently a professor at the School of Internet of Things Engineering, Jiangnan University, China. Her research interests include Energy-Efficient Control of Complex Manufacturing System, Industrial Networked System, and Evolutionary Computing.

Cheng-Lin Liu received his Ph.D. degree from Southeast University, China, in 2008. He is currently a professor at the School of Internet of Things Engineering, Jiangnan University, China. His research interests include Coordination Control of Multi-agent Systems and Distributed Control of Networked Systems.

Zhi-Cheng Ji received his Ph.D. degree from China University of Mining and Technology, China, in 2004. He is currently the vice president of Jiangnan University.