Miquel Noguer Alonso, Julian Antolin Camarena, Alberto Bueno Guerrero
Quantitative Portfolio Optimization (eBook, PDF)
Advanced Techniques and Applications
64,99 €
64,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
64,99 €
Als Download kaufen
64,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
64,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Miquel Noguer Alonso, Julian Antolin Camarena, Alberto Bueno Guerrero
Quantitative Portfolio Optimization (eBook, PDF)
Advanced Techniques and Applications
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Expert guidance on implementing quantitative portfolio optimization techniques
In Quantitative Portfolio Optimization: Theory and Practice, renowned financial practitioner Miquel Noguer, alongside physicists Alberto Bueno Guerrero and Julian Antolin Camarena, who possess excellent knowledge in finance, delve into advanced mathematical techniques for portfolio optimization. The book covers a range of topics including mean-variance optimization, the Black-Litterman Model, risk parity and hierarchical risk parity, factor investing, methods based on moments, and robust optimization as well as…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.82MB
Andere Kunden interessierten sich auch für
- Ahmet Can InciContemporary Issues in Quantitative Finance (eBook, PDF)58,95 €
- Annelise OsborneFrom Hoodies to Suits (eBook, PDF)20,99 €
- Michael IsichenkoQuantitative Portfolio Management (eBook, PDF)38,99 €
- Ben ArmstrongCatching Up to FTX (eBook, PDF)18,99 €
- Mohnish PabraiThe Dhandho Investor (eBook, PDF)26,99 €
- Al NaqviArtificial Intelligence for Asset Management and Investment (eBook, PDF)32,99 €
- The Oxford Handbook of IPOs (eBook, PDF)103,95 €
-
-
-
Expert guidance on implementing quantitative portfolio optimization techniques
In Quantitative Portfolio Optimization: Theory and Practice, renowned financial practitioner Miquel Noguer, alongside physicists Alberto Bueno Guerrero and Julian Antolin Camarena, who possess excellent knowledge in finance, delve into advanced mathematical techniques for portfolio optimization. The book covers a range of topics including mean-variance optimization, the Black-Litterman Model, risk parity and hierarchical risk parity, factor investing, methods based on moments, and robust optimization as well as machine learning and reinforcement technique. These techniques enable readers to develop a systematic, objective, and repeatable approach to investment decision-making, particularly in complex financial markets.
Readers will gain insights into the associated mathematical models, statistical analyses, and computational algorithms for each method, allowing them to put these techniques into practice and identify the best possible mix of assets to maximize returns while minimizing risk. Topics explored in this book include:
Serving as a blueprint for solving portfolio optimization problems, Quantitative Portfolio Optimization: Theory and Practice is an essential resource for finance practitioners and individual investors It helps them stay on the cutting edge of modern portfolio theory and achieve the best returns on investments for themselves, their clients, and their organizations.
In Quantitative Portfolio Optimization: Theory and Practice, renowned financial practitioner Miquel Noguer, alongside physicists Alberto Bueno Guerrero and Julian Antolin Camarena, who possess excellent knowledge in finance, delve into advanced mathematical techniques for portfolio optimization. The book covers a range of topics including mean-variance optimization, the Black-Litterman Model, risk parity and hierarchical risk parity, factor investing, methods based on moments, and robust optimization as well as machine learning and reinforcement technique. These techniques enable readers to develop a systematic, objective, and repeatable approach to investment decision-making, particularly in complex financial markets.
Readers will gain insights into the associated mathematical models, statistical analyses, and computational algorithms for each method, allowing them to put these techniques into practice and identify the best possible mix of assets to maximize returns while minimizing risk. Topics explored in this book include:
- Specific drivers of return across asset classes
- Personal risk tolerance and it#s impact on ideal asses allocation
- The importance of weekly and monthly variance in the returns of specific securities
Serving as a blueprint for solving portfolio optimization problems, Quantitative Portfolio Optimization: Theory and Practice is an essential resource for finance practitioners and individual investors It helps them stay on the cutting edge of modern portfolio theory and achieve the best returns on investments for themselves, their clients, and their organizations.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: For Dummies
- Seitenzahl: 386
- Erscheinungstermin: 22. Januar 2025
- Englisch
- ISBN-13: 9781394281336
- Artikelnr.: 73166919
- Verlag: For Dummies
- Seitenzahl: 386
- Erscheinungstermin: 22. Januar 2025
- Englisch
- ISBN-13: 9781394281336
- Artikelnr.: 73166919
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
MIQUEL NOGUER ALONSO is a financial markets practitioner with 25+ years of experience in asset management. He is the Founder of the Artificial Intelligence Finance Institute and serves as Head of Development at Global AI. He is also the co-editor of the Journal of Machine Learning in Finance.
JULIÁN ANTOLÍN CAMARENA holds a Bachelor's, Master's and a PhD in physics. For his Master's he worked on the foundations of quantum mechanics examining alternative quantization schemes and their application to exotic atoms to discover new physics. His PhD dissertation work was on computational and theoretical optics, electromagnetic scattering from random surfaces, and nonlinear optimization. He then went on to a postdoctoral stint with the U.S. Army Research Laboratory working on inverse reinforcement learning for human-autonomy teaming.
ALBERTO BUENO GUERRERO has two Bachelor's degrees in physics and economics, and a PhD in banking and finance. Since he got his doctorate, he has dedicated himself to research in mathematical finance. His work has been presented at various international conferences and published in journals such as Quantitative Finance, Journal of Derivatives, Journal of Mathematics, and Chaos, Solitons and Fractals. His article "Bond Market Completeness Under Stochastic Strings with Distribution-Valued Strategies" has been considered a feature article in Quantitative Finance.
JULIÁN ANTOLÍN CAMARENA holds a Bachelor's, Master's and a PhD in physics. For his Master's he worked on the foundations of quantum mechanics examining alternative quantization schemes and their application to exotic atoms to discover new physics. His PhD dissertation work was on computational and theoretical optics, electromagnetic scattering from random surfaces, and nonlinear optimization. He then went on to a postdoctoral stint with the U.S. Army Research Laboratory working on inverse reinforcement learning for human-autonomy teaming.
ALBERTO BUENO GUERRERO has two Bachelor's degrees in physics and economics, and a PhD in banking and finance. Since he got his doctorate, he has dedicated himself to research in mathematical finance. His work has been presented at various international conferences and published in journals such as Quantitative Finance, Journal of Derivatives, Journal of Mathematics, and Chaos, Solitons and Fractals. His article "Bond Market Completeness Under Stochastic Strings with Distribution-Valued Strategies" has been considered a feature article in Quantitative Finance.
Contents
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .. . . . . . . 1
1 Introduction
3
1.1 Evolution of Portfolio Optimization . . . . . . . . . . . . . .
.. . . . . . . . . . . . . . 3
1.2 Role of Quantitative Techniques . . . . . . . . . . .. . . . .
. . . . . . . . . . . . . . . . 3
1.3 Organization of the Book . . . . . . . . . . . . .. . . . . . .
. . . . . . . . . . . . . . . . . .7
2 History of Portfolio Optimization
9
2.1 Early beginnings . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 9
2.2 Harry Markowitz's Modern Portfolio Theory (1952) . . . . . . .
. . . . . . . 12
2.3 Black-Litterman Model (1990s) . . . . . . . . . . . . . . .
........................16
2.4 Alternative Methods: Risk Parity, Hierarchical Risk Parity and
Machine Learning . . . . . . . . . . . . . . . . . . .
... .. . . .. . .. . .. .......... . 21
2.4.1 Risk Parity . . . . . . . . . . . . . . . . . . . .
. . . . .. . .. . . .. . . . . . . ......21
2.4.2 Hierarchical Risk Parity . . . . . . . . . . . . . .
. . . .....................28
2.4.3 Machine Learning . . . . . . . . . . . . . . . . . .
. . . ................... ...30
2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . ...................... . . . . . 35
I Foundations of Portfolio
Theory 37
3 Modern Portfolio Theory
38
3.1 Efficient Frontier and Capital Market Line . . . . . . . . . . .
................. 38
3.1.1 Case without riskless asset . . . . . . . . . .
. . . . . . . . . .. . . . . . . 39
3.1.2 Case with a riskless asset . . . . . . . . . . .
. . . . .. . . . . . . . . . . . 44
3.2 Capital Asset Pricing Model . . . . . . . . . . . . . . . . . .
.. . . . . . . . . . . . . . . 50
3.2.1 Case without riskless asset . . . . . . . . . .
. . . . . . . . . . . . . . . . . 50
3.2.2 Case with a riskless asset . . . . . . . . . . .
. . . . . .. . . . . . . . . . . .54
3.3 Multi-factor Models . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 57
3.4 Challenges of Modern Portfolio Theory . . . . . . . . . . . . . .
. . . . . . . . . . . . 62
3.4.1 Estimation Techniques in Portfolio Allocation . .
. . . .. . . . . . .62
3.4.2 Non-Elliptical Distributions and Conditional
Value-at-
Risk (CVaR) . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .66
3.5 Quantum Annealing in Portfolio Management . . . . . . . . . . . .
. . . . . . . . . 68
3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .70
CONTENTS
4 Bayesian Methods in Portfolio Optimization
73
4.1 The Prior . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .. . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The Likelihood . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .80
4.3 The Posterior . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Hierarchical Bayesian Models . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .90
4.6 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 92
4.6.1 Gaussian Processes in a Nutshell . . . . . .
. . . . . . . . . . . . . . . . . . . .93
4.6.2 Uncertainty Quantification and Bayesian
Decision Theory . . . . . 97
4.7 Applications to Portfolio Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 99
4.7.1 GP Regression for Asset Returns . . . . . . .
. . . . . . . . . . . . . . . . . . . 99
4.7.2 Decision Theory in Portfolio Optimization . .
. . . . . . . . . . . . . . . . 100
4.7.3 The Black-Litterman Model . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .103
4.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
II Risk
Management
109
5 Risk Models and Measures
110
5.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .. . . . . . . . . . . . . .. . . . . 111
5.2 VaR and CVaR . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. . . 113
5.2.1 VaR . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .. . .. . .114
5.2.2 CVaR . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. . . 116
5.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .119
5.3.1 Variance-Covariance Method . . . . . . . . . .
. . . . . . . . . . . . . . . .. . .120
5.3.2 Historical Simulation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .120
5.3.3 Monte Carlo Simulation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .121
5.4 Advanced Risk Measures: Tail Risk and Spectral Measures . . . .
. . . . . . . . . .121
5.4.1 Tail Risk Measures . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 Spectral Measures . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 Factor Models and Factor Investing
128
6.1 Single and Multi-Factor Models . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 129
6.1.1 Statistical Models . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . . . . . . 130
6.1.2 Macroeconomic Models . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .131
6.1.3 Cross Sectional Models . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .133
6.2 Factor Risk and Performance Attribution . . . . . . . . . . .
. . . . . . . . . . . . . . . . 139
6.3 Machine Learning in Factor Investing . . . . . . . . . . . .
. . . . . . . . . . . . . . . .. . 145
6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7 Market Impact, Transaction Costs and
Liquidity 149
7.1 Market Impact Models . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . ....150
7.2 Modeling Transaction Costs . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . ...153
7.2.1 Single asset . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . ... 156
CONTENTS
7.2.2 Multiple assets . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .....158
7.3 Optimal Trading Strategies . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . ......160
7.3.1 Mei, DeMiguel and Nogales (2016) . . . . . . .
. . . . . . .. . . . . ... .. 161
7.3.2 Skaf and Boyd (2009) . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .....164
7.4 Liquidity Considerations in Portfolio Optimization . . . . . .
. . . . . . . . . ......166
7.4.1 MV and Liquidity . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 167
7.4.2 CAPM and Liquidity . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .. . . . . 168
7.4.3 APT and Liquidity . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .. . . 170
7.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. . . 172
III Dynamic Models and Control
174
8 Optimal Control
175
8.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. . . . . .175
8.2 Approximate Dynamic Programming . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 176
8.3 The Hamilton-Jacobi-Bellman Equation . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 177
8.4 Sufficiently Smooth Problems . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .. . .179
8.5 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .181
8.6 Applications to Portfolio Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 184
8.6.1 Classical Merton Problem . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .185
8.6.2 Multi-Asset Portfolio with Transaction Costs .
. . . . . . . . . . . . . . 186
8.6.3 Risk-Sensitive Portfolio Optimization . . . . .
. . . . . . . . . . . . . . . . 188
8.6.4 Optimal Portfolio Allocation with
Transaction Costs . . . . . . . . . 189
8.6.5 American Option Pricing . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .189
8.6.6 Portfolio Optimization with Constraints . . .
. . . . . . . . . . . . . . . . 190
8.6.7 Mean-Variance Portfolio Optimization . . . . .
. . . . . . . . . . . . . . .190
8.6.8 Sch¿odinger Control in Wealth Management . . .
. . . . . . . . . . . . 191
8.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .193
9 Markov Decision Processes
195
9.1 Fully Observed MDPs . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 197
9.2 Partially Observed MDPs . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . 199
9.3 Infinite Horizon Problems . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .202
9.4 Finite Horizon Problems . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .206
9.5 The Bellman Equation . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 208
9.6 Solving the Bellman Equation . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .212
9.7 Examples in Portfolio Optimization . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 214
9.7.1 An MDP in Multi-Asset Allocation with
Transaction
Costs . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.7.2 A POMDP for Asset Allocation with Regime
Switching . . . . . 214
9.7.3 An MDP with Continuous State and Action
Spaces for
Option Hedging with Stochastic
Volatility . . . . . . . . . . . . . . . 215
9.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 216
CONTENTS
10 Reinforcement Learning
219
10.1 Connections to Optimal Control . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 221
10.1.1 Policy Iteration . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 222
10.1.2 Value Iteration . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 225
10.1.3 Continuous vs. Discrete Formulations . . . . .
. . . . . . . . . . . . . . . .226
10.2 The Environment and The Reward Function . . . . . . . . . .
. . . . . . . . . . . . 228
10.2.1 The Environment . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 228
10.2.2 The Reward Function . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .232
10.3 Agents Acting in an Environment . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 235
10.4 State-Action and Value Functions . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .238
10.4.1 Value Functions . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .238
10.4.2 Gradients and Policy Improvement . . . . . .
. . . . . . . . . . . . . . .240
10.5 The Policy . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .. . . .. . . . . . . . . . . . 243
10.6 On-Policy Methods . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 247
10.7 Off-Policy Methods . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 249
10.8 Applications to Portfolio Optimization . . . . . . . . . .
. . . . . . . . . . . . . . . 253
10.8.1 Mean-Variance Optimization . . . . . . . .
. . . . . . . . . . . . . . . . 253
10.8.2 Reinforcement Learning Comparison with
Mean-Variance
Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .254
10.8.3 G-Learning and GIRL . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 256
10.8.4 Continuous-time Penalization in Portfolio
Optimization . . .259
10.8.5 Reinforcement Learning for Utility
Maximization . . . . . . . .260
10.8.6 Continuous-Time Portfolio Optimization
with Transaction
Costs . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .261
10.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .. . . 262
IV Machine Learning and Deep Learning
265
11 Deep Learning in Portfolio Management
266
11.1 Neurons and Activation Functions . . . . . . . . . . . .
. . . .. . . . . . . . . . . . 266
11.2 Neural Networks and Function Approximation . . . . . . .
. . . . . . . . . . . 269
11.3 Review of Some Important Architectures . . . . . . . . .
. . . . . .. . . . . . . . 273
11.4 Physics-Informed Neural Networks . . . . . . . . . . . .
. . . . . . . . . . . . . . . 284
11.5 Applications to Portfolio Optimization . . . . . . . . .
. . . . . . . . . . . . . . . .292
11.5.1 Dynamic Asset Allocation Using the Heston
Model . . . . . . 292
11.5.2 Option-Based Portfolio Insurance Using the
Bates Model . .293
11.5.3 Factor Learning Approach to Generative
Modeling of
Equities . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 294
11.6 The Case for and Against Deep Learning . . . . . . . . .
. . . . . . . . . . . . . 296
11.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. . . . . . . . . . 298
12 Graph Based Portfolios
300
12.1 Graph Theory Based Portfolios . . . . . . . . . . . . . .
. . . 300
12.1.1 Literature Review . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .300
12.1.2 Methodology . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 300
CONTENTS
12.2 Equations and Formulas . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 301
12.2.1 Results . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .302
12.3 Hierarchical Risk Parity . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 304
12.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .309
13 Sensitivity-based
Portfolios
310
13.1 Modelling Portfolios Dynamics with PDEs . . . . . . . . . .
. . . . . . . . . . . . 312
13.2 Optimal Drivers Selection: Causality and Persistence . . .
. . . . . . . . . . . 313
13.3 AAD Sensitivities Approximation . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .319
13.3.1 Optimal Network Selection . . . . . .
. . . . . . . . . . . . . . . . . 319
13.3.2 Sensitivity Analysis . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .320
13.3.3 Sensitivity Distance Matrix . . . . .
. . . . . . . . . . . . . . . . . . .320
13.4 Hierarchical Sensitivity Parity . . . .
. . . . . . . . . . . . . . . . . . .322
13.5 Implementation . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 323
13.5.1 Datasets . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 323
13.5.2 Experimental setup . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 323
13.5.3 Short-to-medium investments . . . .
. . . . . . . . . . . . . . . . . 324
13.5.4 Long-term investments . . . . . . .
. . . . . . . . . . . . . . . . . . . 328
13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 332
V Backtesting
333
14 Backtesting in Portfolio Management
334
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . .
. . . . . ................. .. . . . . ..334
14.2 Data Preparation and Handling . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 334
14.3 Implementation of Trading Strategies . . . . . . . . . .
. . . . . . . . . . . . . . . 335
14.4 Types of Backtests . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 336
14.4.1 Walk-Forward Backtest . . . . . .
. . . . . . . . . . . . . . . . . . 336
14.4.2 Resampling Method . . . . . . . .
. . . . . . . . . . . . . . . . . . . 336
14.4.3 Monte Carlo Simulations and
Generative Models . . . . 337
14.5 Performance Metrics . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .337
14.6 Avoiding Common Pitfalls . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 338
14.7 Advanced Techniques . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 339
14.8 Case Study: Applying Backtesting to a Real-World Strategy
. . . . . . . 339
14.9 Impact of Market Conditions on Backtest Results . . . . .
. . . . . . . . . . .340
14.10 Integration with Portfolio Management . . . . . . . . .
. . . . . . . . . . . . .. . 340
14.11 Tools and Software for Backtesting . . . . . . . . . . .
. . . . . . . . . . . .. . . 341
14.12 Regulatory Considerations . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 342
14.13Conclusion . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 342
15 Scenario Generation
344
15.1 Historical Scenarios . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 344
15.2 Bootstrapping Scenarios . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 345
15.3 Copula Based Scenarios . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 345
CONTENTS
15.4 Risk Factor Model Based Scenarios . . . . . . . . . . .
. . . . . . . . . . . . . . . .345
15.5 Time Series Model Scenarios . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .346
15.6 Variational Autoencoders . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 346
15.7 Generative Adversarial Networks (GANs) . . . . . . . .
. . . . . . . . . .. . . .347
Appendices
348
15.8 Software and Tools for Portfolio
Optimization . . . . . . . . . . . . . . . . . 348
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .. . . . . . . 1
1 Introduction
3
1.1 Evolution of Portfolio Optimization . . . . . . . . . . . . . .
.. . . . . . . . . . . . . . 3
1.2 Role of Quantitative Techniques . . . . . . . . . . .. . . . .
. . . . . . . . . . . . . . . . 3
1.3 Organization of the Book . . . . . . . . . . . . .. . . . . . .
. . . . . . . . . . . . . . . . . .7
2 History of Portfolio Optimization
9
2.1 Early beginnings . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 9
2.2 Harry Markowitz's Modern Portfolio Theory (1952) . . . . . . .
. . . . . . . 12
2.3 Black-Litterman Model (1990s) . . . . . . . . . . . . . . .
........................16
2.4 Alternative Methods: Risk Parity, Hierarchical Risk Parity and
Machine Learning . . . . . . . . . . . . . . . . . . .
... .. . . .. . .. . .. .......... . 21
2.4.1 Risk Parity . . . . . . . . . . . . . . . . . . . .
. . . . .. . .. . . .. . . . . . . ......21
2.4.2 Hierarchical Risk Parity . . . . . . . . . . . . . .
. . . .....................28
2.4.3 Machine Learning . . . . . . . . . . . . . . . . . .
. . . ................... ...30
2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . ...................... . . . . . 35
I Foundations of Portfolio
Theory 37
3 Modern Portfolio Theory
38
3.1 Efficient Frontier and Capital Market Line . . . . . . . . . . .
................. 38
3.1.1 Case without riskless asset . . . . . . . . . .
. . . . . . . . . .. . . . . . . 39
3.1.2 Case with a riskless asset . . . . . . . . . . .
. . . . .. . . . . . . . . . . . 44
3.2 Capital Asset Pricing Model . . . . . . . . . . . . . . . . . .
.. . . . . . . . . . . . . . . 50
3.2.1 Case without riskless asset . . . . . . . . . .
. . . . . . . . . . . . . . . . . 50
3.2.2 Case with a riskless asset . . . . . . . . . . .
. . . . . .. . . . . . . . . . . .54
3.3 Multi-factor Models . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 57
3.4 Challenges of Modern Portfolio Theory . . . . . . . . . . . . . .
. . . . . . . . . . . . 62
3.4.1 Estimation Techniques in Portfolio Allocation . .
. . . .. . . . . . .62
3.4.2 Non-Elliptical Distributions and Conditional
Value-at-
Risk (CVaR) . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .66
3.5 Quantum Annealing in Portfolio Management . . . . . . . . . . . .
. . . . . . . . . 68
3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .70
CONTENTS
4 Bayesian Methods in Portfolio Optimization
73
4.1 The Prior . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .. . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The Likelihood . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .80
4.3 The Posterior . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Hierarchical Bayesian Models . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .90
4.6 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 92
4.6.1 Gaussian Processes in a Nutshell . . . . . .
. . . . . . . . . . . . . . . . . . . .93
4.6.2 Uncertainty Quantification and Bayesian
Decision Theory . . . . . 97
4.7 Applications to Portfolio Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 99
4.7.1 GP Regression for Asset Returns . . . . . . .
. . . . . . . . . . . . . . . . . . . 99
4.7.2 Decision Theory in Portfolio Optimization . .
. . . . . . . . . . . . . . . . 100
4.7.3 The Black-Litterman Model . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .103
4.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
II Risk
Management
109
5 Risk Models and Measures
110
5.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .. . . . . . . . . . . . . .. . . . . 111
5.2 VaR and CVaR . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. . . 113
5.2.1 VaR . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .. . .. . .114
5.2.2 CVaR . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. . . 116
5.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .119
5.3.1 Variance-Covariance Method . . . . . . . . . .
. . . . . . . . . . . . . . . .. . .120
5.3.2 Historical Simulation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .120
5.3.3 Monte Carlo Simulation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .121
5.4 Advanced Risk Measures: Tail Risk and Spectral Measures . . . .
. . . . . . . . . .121
5.4.1 Tail Risk Measures . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 Spectral Measures . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 Factor Models and Factor Investing
128
6.1 Single and Multi-Factor Models . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 129
6.1.1 Statistical Models . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . . . . . . 130
6.1.2 Macroeconomic Models . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .131
6.1.3 Cross Sectional Models . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .133
6.2 Factor Risk and Performance Attribution . . . . . . . . . . .
. . . . . . . . . . . . . . . . 139
6.3 Machine Learning in Factor Investing . . . . . . . . . . . .
. . . . . . . . . . . . . . . .. . 145
6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7 Market Impact, Transaction Costs and
Liquidity 149
7.1 Market Impact Models . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . ....150
7.2 Modeling Transaction Costs . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . ...153
7.2.1 Single asset . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . ... 156
CONTENTS
7.2.2 Multiple assets . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .....158
7.3 Optimal Trading Strategies . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . ......160
7.3.1 Mei, DeMiguel and Nogales (2016) . . . . . . .
. . . . . . .. . . . . ... .. 161
7.3.2 Skaf and Boyd (2009) . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .....164
7.4 Liquidity Considerations in Portfolio Optimization . . . . . .
. . . . . . . . . ......166
7.4.1 MV and Liquidity . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 167
7.4.2 CAPM and Liquidity . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .. . . . . 168
7.4.3 APT and Liquidity . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .. . . 170
7.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. . . 172
III Dynamic Models and Control
174
8 Optimal Control
175
8.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. . . . . .175
8.2 Approximate Dynamic Programming . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 176
8.3 The Hamilton-Jacobi-Bellman Equation . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 177
8.4 Sufficiently Smooth Problems . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .. . .179
8.5 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .181
8.6 Applications to Portfolio Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 184
8.6.1 Classical Merton Problem . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .185
8.6.2 Multi-Asset Portfolio with Transaction Costs .
. . . . . . . . . . . . . . 186
8.6.3 Risk-Sensitive Portfolio Optimization . . . . .
. . . . . . . . . . . . . . . . 188
8.6.4 Optimal Portfolio Allocation with
Transaction Costs . . . . . . . . . 189
8.6.5 American Option Pricing . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .189
8.6.6 Portfolio Optimization with Constraints . . .
. . . . . . . . . . . . . . . . 190
8.6.7 Mean-Variance Portfolio Optimization . . . . .
. . . . . . . . . . . . . . .190
8.6.8 Sch¿odinger Control in Wealth Management . . .
. . . . . . . . . . . . 191
8.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .193
9 Markov Decision Processes
195
9.1 Fully Observed MDPs . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 197
9.2 Partially Observed MDPs . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . 199
9.3 Infinite Horizon Problems . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .202
9.4 Finite Horizon Problems . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .206
9.5 The Bellman Equation . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 208
9.6 Solving the Bellman Equation . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .212
9.7 Examples in Portfolio Optimization . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 214
9.7.1 An MDP in Multi-Asset Allocation with
Transaction
Costs . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.7.2 A POMDP for Asset Allocation with Regime
Switching . . . . . 214
9.7.3 An MDP with Continuous State and Action
Spaces for
Option Hedging with Stochastic
Volatility . . . . . . . . . . . . . . . 215
9.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 216
CONTENTS
10 Reinforcement Learning
219
10.1 Connections to Optimal Control . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 221
10.1.1 Policy Iteration . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 222
10.1.2 Value Iteration . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 225
10.1.3 Continuous vs. Discrete Formulations . . . . .
. . . . . . . . . . . . . . . .226
10.2 The Environment and The Reward Function . . . . . . . . . .
. . . . . . . . . . . . 228
10.2.1 The Environment . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 228
10.2.2 The Reward Function . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .232
10.3 Agents Acting in an Environment . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 235
10.4 State-Action and Value Functions . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .238
10.4.1 Value Functions . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .238
10.4.2 Gradients and Policy Improvement . . . . . .
. . . . . . . . . . . . . . .240
10.5 The Policy . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .. . . .. . . . . . . . . . . . 243
10.6 On-Policy Methods . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 247
10.7 Off-Policy Methods . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 249
10.8 Applications to Portfolio Optimization . . . . . . . . . .
. . . . . . . . . . . . . . . 253
10.8.1 Mean-Variance Optimization . . . . . . . .
. . . . . . . . . . . . . . . . 253
10.8.2 Reinforcement Learning Comparison with
Mean-Variance
Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .254
10.8.3 G-Learning and GIRL . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 256
10.8.4 Continuous-time Penalization in Portfolio
Optimization . . .259
10.8.5 Reinforcement Learning for Utility
Maximization . . . . . . . .260
10.8.6 Continuous-Time Portfolio Optimization
with Transaction
Costs . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .261
10.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .. . . 262
IV Machine Learning and Deep Learning
265
11 Deep Learning in Portfolio Management
266
11.1 Neurons and Activation Functions . . . . . . . . . . . .
. . . .. . . . . . . . . . . . 266
11.2 Neural Networks and Function Approximation . . . . . . .
. . . . . . . . . . . 269
11.3 Review of Some Important Architectures . . . . . . . . .
. . . . . .. . . . . . . . 273
11.4 Physics-Informed Neural Networks . . . . . . . . . . . .
. . . . . . . . . . . . . . . 284
11.5 Applications to Portfolio Optimization . . . . . . . . .
. . . . . . . . . . . . . . . .292
11.5.1 Dynamic Asset Allocation Using the Heston
Model . . . . . . 292
11.5.2 Option-Based Portfolio Insurance Using the
Bates Model . .293
11.5.3 Factor Learning Approach to Generative
Modeling of
Equities . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 294
11.6 The Case for and Against Deep Learning . . . . . . . . .
. . . . . . . . . . . . . 296
11.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. . . . . . . . . . 298
12 Graph Based Portfolios
300
12.1 Graph Theory Based Portfolios . . . . . . . . . . . . . .
. . . 300
12.1.1 Literature Review . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .300
12.1.2 Methodology . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 300
CONTENTS
12.2 Equations and Formulas . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 301
12.2.1 Results . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .302
12.3 Hierarchical Risk Parity . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 304
12.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .309
13 Sensitivity-based
Portfolios
310
13.1 Modelling Portfolios Dynamics with PDEs . . . . . . . . . .
. . . . . . . . . . . . 312
13.2 Optimal Drivers Selection: Causality and Persistence . . .
. . . . . . . . . . . 313
13.3 AAD Sensitivities Approximation . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .319
13.3.1 Optimal Network Selection . . . . . .
. . . . . . . . . . . . . . . . . 319
13.3.2 Sensitivity Analysis . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .320
13.3.3 Sensitivity Distance Matrix . . . . .
. . . . . . . . . . . . . . . . . . .320
13.4 Hierarchical Sensitivity Parity . . . .
. . . . . . . . . . . . . . . . . . .322
13.5 Implementation . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 323
13.5.1 Datasets . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 323
13.5.2 Experimental setup . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 323
13.5.3 Short-to-medium investments . . . .
. . . . . . . . . . . . . . . . . 324
13.5.4 Long-term investments . . . . . . .
. . . . . . . . . . . . . . . . . . . 328
13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 332
V Backtesting
333
14 Backtesting in Portfolio Management
334
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . .
. . . . . ................. .. . . . . ..334
14.2 Data Preparation and Handling . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 334
14.3 Implementation of Trading Strategies . . . . . . . . . .
. . . . . . . . . . . . . . . 335
14.4 Types of Backtests . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 336
14.4.1 Walk-Forward Backtest . . . . . .
. . . . . . . . . . . . . . . . . . 336
14.4.2 Resampling Method . . . . . . . .
. . . . . . . . . . . . . . . . . . . 336
14.4.3 Monte Carlo Simulations and
Generative Models . . . . 337
14.5 Performance Metrics . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .337
14.6 Avoiding Common Pitfalls . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 338
14.7 Advanced Techniques . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 339
14.8 Case Study: Applying Backtesting to a Real-World Strategy
. . . . . . . 339
14.9 Impact of Market Conditions on Backtest Results . . . . .
. . . . . . . . . . .340
14.10 Integration with Portfolio Management . . . . . . . . .
. . . . . . . . . . . . .. . 340
14.11 Tools and Software for Backtesting . . . . . . . . . . .
. . . . . . . . . . . .. . . 341
14.12 Regulatory Considerations . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 342
14.13Conclusion . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 342
15 Scenario Generation
344
15.1 Historical Scenarios . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 344
15.2 Bootstrapping Scenarios . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 345
15.3 Copula Based Scenarios . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 345
CONTENTS
15.4 Risk Factor Model Based Scenarios . . . . . . . . . . .
. . . . . . . . . . . . . . . .345
15.5 Time Series Model Scenarios . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .346
15.6 Variational Autoencoders . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 346
15.7 Generative Adversarial Networks (GANs) . . . . . . . .
. . . . . . . . . .. . . .347
Appendices
348
15.8 Software and Tools for Portfolio
Optimization . . . . . . . . . . . . . . . . . 348
Contents
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .. . . . . . . 1
1 Introduction
3
1.1 Evolution of Portfolio Optimization . . . . . . . . . . . . . .
.. . . . . . . . . . . . . . 3
1.2 Role of Quantitative Techniques . . . . . . . . . . .. . . . .
. . . . . . . . . . . . . . . . 3
1.3 Organization of the Book . . . . . . . . . . . . .. . . . . . .
. . . . . . . . . . . . . . . . . .7
2 History of Portfolio Optimization
9
2.1 Early beginnings . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 9
2.2 Harry Markowitz's Modern Portfolio Theory (1952) . . . . . . .
. . . . . . . 12
2.3 Black-Litterman Model (1990s) . . . . . . . . . . . . . . .
........................16
2.4 Alternative Methods: Risk Parity, Hierarchical Risk Parity and
Machine Learning . . . . . . . . . . . . . . . . . . .
... .. . . .. . .. . .. .......... . 21
2.4.1 Risk Parity . . . . . . . . . . . . . . . . . . . .
. . . . .. . .. . . .. . . . . . . ......21
2.4.2 Hierarchical Risk Parity . . . . . . . . . . . . . .
. . . .....................28
2.4.3 Machine Learning . . . . . . . . . . . . . . . . . .
. . . ................... ...30
2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . ...................... . . . . . 35
I Foundations of Portfolio
Theory 37
3 Modern Portfolio Theory
38
3.1 Efficient Frontier and Capital Market Line . . . . . . . . . . .
................. 38
3.1.1 Case without riskless asset . . . . . . . . . .
. . . . . . . . . .. . . . . . . 39
3.1.2 Case with a riskless asset . . . . . . . . . . .
. . . . .. . . . . . . . . . . . 44
3.2 Capital Asset Pricing Model . . . . . . . . . . . . . . . . . .
.. . . . . . . . . . . . . . . 50
3.2.1 Case without riskless asset . . . . . . . . . .
. . . . . . . . . . . . . . . . . 50
3.2.2 Case with a riskless asset . . . . . . . . . . .
. . . . . .. . . . . . . . . . . .54
3.3 Multi-factor Models . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 57
3.4 Challenges of Modern Portfolio Theory . . . . . . . . . . . . . .
. . . . . . . . . . . . 62
3.4.1 Estimation Techniques in Portfolio Allocation . .
. . . .. . . . . . .62
3.4.2 Non-Elliptical Distributions and Conditional
Value-at-
Risk (CVaR) . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .66
3.5 Quantum Annealing in Portfolio Management . . . . . . . . . . . .
. . . . . . . . . 68
3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .70
CONTENTS
4 Bayesian Methods in Portfolio Optimization
73
4.1 The Prior . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .. . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The Likelihood . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .80
4.3 The Posterior . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Hierarchical Bayesian Models . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .90
4.6 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 92
4.6.1 Gaussian Processes in a Nutshell . . . . . .
. . . . . . . . . . . . . . . . . . . .93
4.6.2 Uncertainty Quantification and Bayesian
Decision Theory . . . . . 97
4.7 Applications to Portfolio Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 99
4.7.1 GP Regression for Asset Returns . . . . . . .
. . . . . . . . . . . . . . . . . . . 99
4.7.2 Decision Theory in Portfolio Optimization . .
. . . . . . . . . . . . . . . . 100
4.7.3 The Black-Litterman Model . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .103
4.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
II Risk
Management
109
5 Risk Models and Measures
110
5.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .. . . . . . . . . . . . . .. . . . . 111
5.2 VaR and CVaR . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. . . 113
5.2.1 VaR . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .. . .. . .114
5.2.2 CVaR . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. . . 116
5.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .119
5.3.1 Variance-Covariance Method . . . . . . . . . .
. . . . . . . . . . . . . . . .. . .120
5.3.2 Historical Simulation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .120
5.3.3 Monte Carlo Simulation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .121
5.4 Advanced Risk Measures: Tail Risk and Spectral Measures . . . .
. . . . . . . . . .121
5.4.1 Tail Risk Measures . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 Spectral Measures . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 Factor Models and Factor Investing
128
6.1 Single and Multi-Factor Models . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 129
6.1.1 Statistical Models . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . . . . . . 130
6.1.2 Macroeconomic Models . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .131
6.1.3 Cross Sectional Models . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .133
6.2 Factor Risk and Performance Attribution . . . . . . . . . . .
. . . . . . . . . . . . . . . . 139
6.3 Machine Learning in Factor Investing . . . . . . . . . . . .
. . . . . . . . . . . . . . . .. . 145
6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7 Market Impact, Transaction Costs and
Liquidity 149
7.1 Market Impact Models . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . ....150
7.2 Modeling Transaction Costs . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . ...153
7.2.1 Single asset . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . ... 156
CONTENTS
7.2.2 Multiple assets . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .....158
7.3 Optimal Trading Strategies . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . ......160
7.3.1 Mei, DeMiguel and Nogales (2016) . . . . . . .
. . . . . . .. . . . . ... .. 161
7.3.2 Skaf and Boyd (2009) . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .....164
7.4 Liquidity Considerations in Portfolio Optimization . . . . . .
. . . . . . . . . ......166
7.4.1 MV and Liquidity . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 167
7.4.2 CAPM and Liquidity . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .. . . . . 168
7.4.3 APT and Liquidity . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .. . . 170
7.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. . . 172
III Dynamic Models and Control
174
8 Optimal Control
175
8.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. . . . . .175
8.2 Approximate Dynamic Programming . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 176
8.3 The Hamilton-Jacobi-Bellman Equation . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 177
8.4 Sufficiently Smooth Problems . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .. . .179
8.5 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .181
8.6 Applications to Portfolio Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 184
8.6.1 Classical Merton Problem . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .185
8.6.2 Multi-Asset Portfolio with Transaction Costs .
. . . . . . . . . . . . . . 186
8.6.3 Risk-Sensitive Portfolio Optimization . . . . .
. . . . . . . . . . . . . . . . 188
8.6.4 Optimal Portfolio Allocation with
Transaction Costs . . . . . . . . . 189
8.6.5 American Option Pricing . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .189
8.6.6 Portfolio Optimization with Constraints . . .
. . . . . . . . . . . . . . . . 190
8.6.7 Mean-Variance Portfolio Optimization . . . . .
. . . . . . . . . . . . . . .190
8.6.8 Sch¿odinger Control in Wealth Management . . .
. . . . . . . . . . . . 191
8.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .193
9 Markov Decision Processes
195
9.1 Fully Observed MDPs . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 197
9.2 Partially Observed MDPs . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . 199
9.3 Infinite Horizon Problems . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .202
9.4 Finite Horizon Problems . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .206
9.5 The Bellman Equation . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 208
9.6 Solving the Bellman Equation . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .212
9.7 Examples in Portfolio Optimization . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 214
9.7.1 An MDP in Multi-Asset Allocation with
Transaction
Costs . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.7.2 A POMDP for Asset Allocation with Regime
Switching . . . . . 214
9.7.3 An MDP with Continuous State and Action
Spaces for
Option Hedging with Stochastic
Volatility . . . . . . . . . . . . . . . 215
9.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 216
CONTENTS
10 Reinforcement Learning
219
10.1 Connections to Optimal Control . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 221
10.1.1 Policy Iteration . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 222
10.1.2 Value Iteration . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 225
10.1.3 Continuous vs. Discrete Formulations . . . . .
. . . . . . . . . . . . . . . .226
10.2 The Environment and The Reward Function . . . . . . . . . .
. . . . . . . . . . . . 228
10.2.1 The Environment . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 228
10.2.2 The Reward Function . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .232
10.3 Agents Acting in an Environment . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 235
10.4 State-Action and Value Functions . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .238
10.4.1 Value Functions . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .238
10.4.2 Gradients and Policy Improvement . . . . . .
. . . . . . . . . . . . . . .240
10.5 The Policy . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .. . . .. . . . . . . . . . . . 243
10.6 On-Policy Methods . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 247
10.7 Off-Policy Methods . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 249
10.8 Applications to Portfolio Optimization . . . . . . . . . .
. . . . . . . . . . . . . . . 253
10.8.1 Mean-Variance Optimization . . . . . . . .
. . . . . . . . . . . . . . . . 253
10.8.2 Reinforcement Learning Comparison with
Mean-Variance
Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .254
10.8.3 G-Learning and GIRL . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 256
10.8.4 Continuous-time Penalization in Portfolio
Optimization . . .259
10.8.5 Reinforcement Learning for Utility
Maximization . . . . . . . .260
10.8.6 Continuous-Time Portfolio Optimization
with Transaction
Costs . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .261
10.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .. . . 262
IV Machine Learning and Deep Learning
265
11 Deep Learning in Portfolio Management
266
11.1 Neurons and Activation Functions . . . . . . . . . . . .
. . . .. . . . . . . . . . . . 266
11.2 Neural Networks and Function Approximation . . . . . . .
. . . . . . . . . . . 269
11.3 Review of Some Important Architectures . . . . . . . . .
. . . . . .. . . . . . . . 273
11.4 Physics-Informed Neural Networks . . . . . . . . . . . .
. . . . . . . . . . . . . . . 284
11.5 Applications to Portfolio Optimization . . . . . . . . .
. . . . . . . . . . . . . . . .292
11.5.1 Dynamic Asset Allocation Using the Heston
Model . . . . . . 292
11.5.2 Option-Based Portfolio Insurance Using the
Bates Model . .293
11.5.3 Factor Learning Approach to Generative
Modeling of
Equities . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 294
11.6 The Case for and Against Deep Learning . . . . . . . . .
. . . . . . . . . . . . . 296
11.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. . . . . . . . . . 298
12 Graph Based Portfolios
300
12.1 Graph Theory Based Portfolios . . . . . . . . . . . . . .
. . . 300
12.1.1 Literature Review . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .300
12.1.2 Methodology . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 300
CONTENTS
12.2 Equations and Formulas . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 301
12.2.1 Results . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .302
12.3 Hierarchical Risk Parity . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 304
12.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .309
13 Sensitivity-based
Portfolios
310
13.1 Modelling Portfolios Dynamics with PDEs . . . . . . . . . .
. . . . . . . . . . . . 312
13.2 Optimal Drivers Selection: Causality and Persistence . . .
. . . . . . . . . . . 313
13.3 AAD Sensitivities Approximation . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .319
13.3.1 Optimal Network Selection . . . . . .
. . . . . . . . . . . . . . . . . 319
13.3.2 Sensitivity Analysis . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .320
13.3.3 Sensitivity Distance Matrix . . . . .
. . . . . . . . . . . . . . . . . . .320
13.4 Hierarchical Sensitivity Parity . . . .
. . . . . . . . . . . . . . . . . . .322
13.5 Implementation . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 323
13.5.1 Datasets . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 323
13.5.2 Experimental setup . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 323
13.5.3 Short-to-medium investments . . . .
. . . . . . . . . . . . . . . . . 324
13.5.4 Long-term investments . . . . . . .
. . . . . . . . . . . . . . . . . . . 328
13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 332
V Backtesting
333
14 Backtesting in Portfolio Management
334
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . .
. . . . . ................. .. . . . . ..334
14.2 Data Preparation and Handling . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 334
14.3 Implementation of Trading Strategies . . . . . . . . . .
. . . . . . . . . . . . . . . 335
14.4 Types of Backtests . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 336
14.4.1 Walk-Forward Backtest . . . . . .
. . . . . . . . . . . . . . . . . . 336
14.4.2 Resampling Method . . . . . . . .
. . . . . . . . . . . . . . . . . . . 336
14.4.3 Monte Carlo Simulations and
Generative Models . . . . 337
14.5 Performance Metrics . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .337
14.6 Avoiding Common Pitfalls . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 338
14.7 Advanced Techniques . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 339
14.8 Case Study: Applying Backtesting to a Real-World Strategy
. . . . . . . 339
14.9 Impact of Market Conditions on Backtest Results . . . . .
. . . . . . . . . . .340
14.10 Integration with Portfolio Management . . . . . . . . .
. . . . . . . . . . . . .. . 340
14.11 Tools and Software for Backtesting . . . . . . . . . . .
. . . . . . . . . . . .. . . 341
14.12 Regulatory Considerations . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 342
14.13Conclusion . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 342
15 Scenario Generation
344
15.1 Historical Scenarios . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 344
15.2 Bootstrapping Scenarios . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 345
15.3 Copula Based Scenarios . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 345
CONTENTS
15.4 Risk Factor Model Based Scenarios . . . . . . . . . . .
. . . . . . . . . . . . . . . .345
15.5 Time Series Model Scenarios . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .346
15.6 Variational Autoencoders . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 346
15.7 Generative Adversarial Networks (GANs) . . . . . . . .
. . . . . . . . . .. . . .347
Appendices
348
15.8 Software and Tools for Portfolio
Optimization . . . . . . . . . . . . . . . . . 348
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .. . . . . . . 1
1 Introduction
3
1.1 Evolution of Portfolio Optimization . . . . . . . . . . . . . .
.. . . . . . . . . . . . . . 3
1.2 Role of Quantitative Techniques . . . . . . . . . . .. . . . .
. . . . . . . . . . . . . . . . 3
1.3 Organization of the Book . . . . . . . . . . . . .. . . . . . .
. . . . . . . . . . . . . . . . . .7
2 History of Portfolio Optimization
9
2.1 Early beginnings . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 9
2.2 Harry Markowitz's Modern Portfolio Theory (1952) . . . . . . .
. . . . . . . 12
2.3 Black-Litterman Model (1990s) . . . . . . . . . . . . . . .
........................16
2.4 Alternative Methods: Risk Parity, Hierarchical Risk Parity and
Machine Learning . . . . . . . . . . . . . . . . . . .
... .. . . .. . .. . .. .......... . 21
2.4.1 Risk Parity . . . . . . . . . . . . . . . . . . . .
. . . . .. . .. . . .. . . . . . . ......21
2.4.2 Hierarchical Risk Parity . . . . . . . . . . . . . .
. . . .....................28
2.4.3 Machine Learning . . . . . . . . . . . . . . . . . .
. . . ................... ...30
2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . ...................... . . . . . 35
I Foundations of Portfolio
Theory 37
3 Modern Portfolio Theory
38
3.1 Efficient Frontier and Capital Market Line . . . . . . . . . . .
................. 38
3.1.1 Case without riskless asset . . . . . . . . . .
. . . . . . . . . .. . . . . . . 39
3.1.2 Case with a riskless asset . . . . . . . . . . .
. . . . .. . . . . . . . . . . . 44
3.2 Capital Asset Pricing Model . . . . . . . . . . . . . . . . . .
.. . . . . . . . . . . . . . . 50
3.2.1 Case without riskless asset . . . . . . . . . .
. . . . . . . . . . . . . . . . . 50
3.2.2 Case with a riskless asset . . . . . . . . . . .
. . . . . .. . . . . . . . . . . .54
3.3 Multi-factor Models . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 57
3.4 Challenges of Modern Portfolio Theory . . . . . . . . . . . . . .
. . . . . . . . . . . . 62
3.4.1 Estimation Techniques in Portfolio Allocation . .
. . . .. . . . . . .62
3.4.2 Non-Elliptical Distributions and Conditional
Value-at-
Risk (CVaR) . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .66
3.5 Quantum Annealing in Portfolio Management . . . . . . . . . . . .
. . . . . . . . . 68
3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .70
CONTENTS
4 Bayesian Methods in Portfolio Optimization
73
4.1 The Prior . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .. . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The Likelihood . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .80
4.3 The Posterior . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Hierarchical Bayesian Models . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .90
4.6 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 92
4.6.1 Gaussian Processes in a Nutshell . . . . . .
. . . . . . . . . . . . . . . . . . . .93
4.6.2 Uncertainty Quantification and Bayesian
Decision Theory . . . . . 97
4.7 Applications to Portfolio Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 99
4.7.1 GP Regression for Asset Returns . . . . . . .
. . . . . . . . . . . . . . . . . . . 99
4.7.2 Decision Theory in Portfolio Optimization . .
. . . . . . . . . . . . . . . . 100
4.7.3 The Black-Litterman Model . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .103
4.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
II Risk
Management
109
5 Risk Models and Measures
110
5.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .. . . . . . . . . . . . . .. . . . . 111
5.2 VaR and CVaR . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. . . 113
5.2.1 VaR . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .. . .. . .114
5.2.2 CVaR . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. . . 116
5.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .119
5.3.1 Variance-Covariance Method . . . . . . . . . .
. . . . . . . . . . . . . . . .. . .120
5.3.2 Historical Simulation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .120
5.3.3 Monte Carlo Simulation . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .121
5.4 Advanced Risk Measures: Tail Risk and Spectral Measures . . . .
. . . . . . . . . .121
5.4.1 Tail Risk Measures . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 Spectral Measures . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 Factor Models and Factor Investing
128
6.1 Single and Multi-Factor Models . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 129
6.1.1 Statistical Models . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . . . . . . 130
6.1.2 Macroeconomic Models . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .131
6.1.3 Cross Sectional Models . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .133
6.2 Factor Risk and Performance Attribution . . . . . . . . . . .
. . . . . . . . . . . . . . . . 139
6.3 Machine Learning in Factor Investing . . . . . . . . . . . .
. . . . . . . . . . . . . . . .. . 145
6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7 Market Impact, Transaction Costs and
Liquidity 149
7.1 Market Impact Models . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . ....150
7.2 Modeling Transaction Costs . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . ...153
7.2.1 Single asset . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . ... 156
CONTENTS
7.2.2 Multiple assets . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .....158
7.3 Optimal Trading Strategies . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . ......160
7.3.1 Mei, DeMiguel and Nogales (2016) . . . . . . .
. . . . . . .. . . . . ... .. 161
7.3.2 Skaf and Boyd (2009) . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .....164
7.4 Liquidity Considerations in Portfolio Optimization . . . . . .
. . . . . . . . . ......166
7.4.1 MV and Liquidity . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 167
7.4.2 CAPM and Liquidity . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .. . . . . 168
7.4.3 APT and Liquidity . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .. . . 170
7.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. . . 172
III Dynamic Models and Control
174
8 Optimal Control
175
8.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. . . . . .175
8.2 Approximate Dynamic Programming . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 176
8.3 The Hamilton-Jacobi-Bellman Equation . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 177
8.4 Sufficiently Smooth Problems . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .. . .179
8.5 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .181
8.6 Applications to Portfolio Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 184
8.6.1 Classical Merton Problem . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .185
8.6.2 Multi-Asset Portfolio with Transaction Costs .
. . . . . . . . . . . . . . 186
8.6.3 Risk-Sensitive Portfolio Optimization . . . . .
. . . . . . . . . . . . . . . . 188
8.6.4 Optimal Portfolio Allocation with
Transaction Costs . . . . . . . . . 189
8.6.5 American Option Pricing . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .189
8.6.6 Portfolio Optimization with Constraints . . .
. . . . . . . . . . . . . . . . 190
8.6.7 Mean-Variance Portfolio Optimization . . . . .
. . . . . . . . . . . . . . .190
8.6.8 Sch¿odinger Control in Wealth Management . . .
. . . . . . . . . . . . 191
8.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .193
9 Markov Decision Processes
195
9.1 Fully Observed MDPs . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 197
9.2 Partially Observed MDPs . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . 199
9.3 Infinite Horizon Problems . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .202
9.4 Finite Horizon Problems . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .206
9.5 The Bellman Equation . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 208
9.6 Solving the Bellman Equation . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .212
9.7 Examples in Portfolio Optimization . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 214
9.7.1 An MDP in Multi-Asset Allocation with
Transaction
Costs . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.7.2 A POMDP for Asset Allocation with Regime
Switching . . . . . 214
9.7.3 An MDP with Continuous State and Action
Spaces for
Option Hedging with Stochastic
Volatility . . . . . . . . . . . . . . . 215
9.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 216
CONTENTS
10 Reinforcement Learning
219
10.1 Connections to Optimal Control . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 221
10.1.1 Policy Iteration . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 222
10.1.2 Value Iteration . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 225
10.1.3 Continuous vs. Discrete Formulations . . . . .
. . . . . . . . . . . . . . . .226
10.2 The Environment and The Reward Function . . . . . . . . . .
. . . . . . . . . . . . 228
10.2.1 The Environment . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 228
10.2.2 The Reward Function . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .232
10.3 Agents Acting in an Environment . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 235
10.4 State-Action and Value Functions . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .238
10.4.1 Value Functions . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .238
10.4.2 Gradients and Policy Improvement . . . . . .
. . . . . . . . . . . . . . .240
10.5 The Policy . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .. . . .. . . . . . . . . . . . 243
10.6 On-Policy Methods . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 247
10.7 Off-Policy Methods . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 249
10.8 Applications to Portfolio Optimization . . . . . . . . . .
. . . . . . . . . . . . . . . 253
10.8.1 Mean-Variance Optimization . . . . . . . .
. . . . . . . . . . . . . . . . 253
10.8.2 Reinforcement Learning Comparison with
Mean-Variance
Optimization . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .254
10.8.3 G-Learning and GIRL . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 256
10.8.4 Continuous-time Penalization in Portfolio
Optimization . . .259
10.8.5 Reinforcement Learning for Utility
Maximization . . . . . . . .260
10.8.6 Continuous-Time Portfolio Optimization
with Transaction
Costs . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .261
10.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .. . . 262
IV Machine Learning and Deep Learning
265
11 Deep Learning in Portfolio Management
266
11.1 Neurons and Activation Functions . . . . . . . . . . . .
. . . .. . . . . . . . . . . . 266
11.2 Neural Networks and Function Approximation . . . . . . .
. . . . . . . . . . . 269
11.3 Review of Some Important Architectures . . . . . . . . .
. . . . . .. . . . . . . . 273
11.4 Physics-Informed Neural Networks . . . . . . . . . . . .
. . . . . . . . . . . . . . . 284
11.5 Applications to Portfolio Optimization . . . . . . . . .
. . . . . . . . . . . . . . . .292
11.5.1 Dynamic Asset Allocation Using the Heston
Model . . . . . . 292
11.5.2 Option-Based Portfolio Insurance Using the
Bates Model . .293
11.5.3 Factor Learning Approach to Generative
Modeling of
Equities . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 294
11.6 The Case for and Against Deep Learning . . . . . . . . .
. . . . . . . . . . . . . 296
11.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. . . . . . . . . . 298
12 Graph Based Portfolios
300
12.1 Graph Theory Based Portfolios . . . . . . . . . . . . . .
. . . 300
12.1.1 Literature Review . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .300
12.1.2 Methodology . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 300
CONTENTS
12.2 Equations and Formulas . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 301
12.2.1 Results . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .302
12.3 Hierarchical Risk Parity . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 304
12.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .309
13 Sensitivity-based
Portfolios
310
13.1 Modelling Portfolios Dynamics with PDEs . . . . . . . . . .
. . . . . . . . . . . . 312
13.2 Optimal Drivers Selection: Causality and Persistence . . .
. . . . . . . . . . . 313
13.3 AAD Sensitivities Approximation . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .319
13.3.1 Optimal Network Selection . . . . . .
. . . . . . . . . . . . . . . . . 319
13.3.2 Sensitivity Analysis . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .320
13.3.3 Sensitivity Distance Matrix . . . . .
. . . . . . . . . . . . . . . . . . .320
13.4 Hierarchical Sensitivity Parity . . . .
. . . . . . . . . . . . . . . . . . .322
13.5 Implementation . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 323
13.5.1 Datasets . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 323
13.5.2 Experimental setup . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 323
13.5.3 Short-to-medium investments . . . .
. . . . . . . . . . . . . . . . . 324
13.5.4 Long-term investments . . . . . . .
. . . . . . . . . . . . . . . . . . . 328
13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 332
V Backtesting
333
14 Backtesting in Portfolio Management
334
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . .
. . . . . ................. .. . . . . ..334
14.2 Data Preparation and Handling . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 334
14.3 Implementation of Trading Strategies . . . . . . . . . .
. . . . . . . . . . . . . . . 335
14.4 Types of Backtests . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 336
14.4.1 Walk-Forward Backtest . . . . . .
. . . . . . . . . . . . . . . . . . 336
14.4.2 Resampling Method . . . . . . . .
. . . . . . . . . . . . . . . . . . . 336
14.4.3 Monte Carlo Simulations and
Generative Models . . . . 337
14.5 Performance Metrics . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .337
14.6 Avoiding Common Pitfalls . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 338
14.7 Advanced Techniques . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 339
14.8 Case Study: Applying Backtesting to a Real-World Strategy
. . . . . . . 339
14.9 Impact of Market Conditions on Backtest Results . . . . .
. . . . . . . . . . .340
14.10 Integration with Portfolio Management . . . . . . . . .
. . . . . . . . . . . . .. . 340
14.11 Tools and Software for Backtesting . . . . . . . . . . .
. . . . . . . . . . . .. . . 341
14.12 Regulatory Considerations . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 342
14.13Conclusion . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 342
15 Scenario Generation
344
15.1 Historical Scenarios . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 344
15.2 Bootstrapping Scenarios . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 345
15.3 Copula Based Scenarios . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 345
CONTENTS
15.4 Risk Factor Model Based Scenarios . . . . . . . . . . .
. . . . . . . . . . . . . . . .345
15.5 Time Series Model Scenarios . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .346
15.6 Variational Autoencoders . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 346
15.7 Generative Adversarial Networks (GANs) . . . . . . . .
. . . . . . . . . .. . . .347
Appendices
348
15.8 Software and Tools for Portfolio
Optimization . . . . . . . . . . . . . . . . . 348