Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A unique introductory text on quantum mechanics, from basic principles to historical perspective. * Includes description of the historical developments that led to the discovery of QM, often left out of other textbooks. * Emphasizes basic concepts that were essential in this discovery, placing them in context and making them more understandable to students. * Written in an easy-to-understand style and assuming no prior knowledge of the topic, this book provides a solid foundation for future study of quantum chemistry. * Includes problem sets for student use.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 1.56MB
- Valerio MagnascoMethods of Molecular Quantum Mechanics (eBook, PDF)54,99 €
- Sason ShaikA Chemist's Guide to Valence Bond Theory (eBook, PDF)122,99 €
- Sandor FliszarAtomic Charges, Bond Properties, and Molecular Energies (eBook, PDF)117,99 €
- Quantum Oscillators (eBook, PDF)150,99 €
- Markus ReiherRelativistic Quantum Chemistry (eBook, PDF)178,99 €
- Donald W. RogersConcise Physical Chemistry (eBook, PDF)74,99 €
- Advances in Chemical Physics, Volume 156 (eBook, PDF)176,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 208
- Erscheinungstermin: 9. April 2004
- Englisch
- ISBN-13: 9780471654797
- Artikelnr.: 37301927
- Verlag: Wiley
- Seitenzahl: 208
- Erscheinungstermin: 9. April 2004
- Englisch
- ISBN-13: 9780471654797
- Artikelnr.: 37301927
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 The Discovery of Quantum Mechanics 1
I Introduction 1
II Planck and Quantization 3
III Bohr and the Hydrogen Atom 7
IV Matrix Mechanics 11
V The Uncertainty Relations 13
VI Wave Mechanics 14
VII The Final Touches of Quantum Mechanics 20
VIII Concluding Remarks 22
2 The Mathematics of Quantum Mechanics 23
I Introduction 23
II Differential Equations 24
III Kummer's Function 25
IV Matrices 27
V Permutations 30
VI Determinants 31
VII Properties of Determinants 32
VIII Linear Equations and Eigenvalues 35
IX Problems 37
3 Classical Mechanics 39
I Introduction 39
II Vectors and Vector Fields 40
III Hamiltonian Mechanics 43
IV The Classical Harmonic Oscillator 44
V Angular Momentum 45
VI Polar Coordinates 49
VII Problems 51
4 Wave Mechanics of a Free Particle 52
I Introduction 52
II The Mathematics of Plane Waves 53
III The Schrödinger Equation of a Free Particle 54
IV The Interpretation of the Wave Function 56
V Wave Packets 58
VI Concluding Remarks 62
VII Problems 63
5 The Schrödinger Equation 64
I Introduction 64
II Operators 66
III The Particle in a Box 68
IV Concluding Remarks 71
V Problems 72
6 Applications 73
I Introduction 73
II A Particle in a Finite Box 74
III Tunneling 78
IV The Harmonic Oscillator 81
V Problems 87
7 Angular Momentum 88
I Introduction 88
II Commuting Operators 89
III Commutation Relations of the Angular Momentum 90
IV The Rigid Rotor 91
V Eigenfunctions of the Angular Momentum 93
VI Concluding Remarks 96
VII Problems 96
8 The Hydrogen Atom 98
I Introduction 98
II Solving the Schrödinger Equation 99
III Deriving the Energy Eigenvalues 101
IV The Behavior of the Eigenfunctions 103
V Problems 106
9 Approximate Methods 108
I Introduction 108
II The Variational Principle 109
III Applications of the Variational Principle 111
IV Perturbation Theory for a Nondegenerate State 113
V The Stark Effect of the Hydrogen Atom 116
VI Perturbation Theory for Degenerate States 119
VII Concluding Remarks 120
VIII Problems 120
10 The Helium Atom 122
I Introduction 122
II Experimental Developments 123
III Pauli's Exclusion Principle 126
IV The Discovery of the Electron Spin 127
V The Mathematical Description of the Electron Spin 129
VI The Exclusion Principle Revisited 132
VII Two-electron Systems 133
VIII The Helium Atom 135
IX The Helium Atom Orbitals 138
X Concluding Remarks 139
XI Problems 140
11 Atomic Structure 142
I Introduction 142
II Atomic and Molecular Wave Function 145
III The Hartree-Fock Method 146
IV Slater Orbitals 152
V Multiplet Theory 154
VI Concluding Remarks 158
VII Problems 158
12 Molecular Structure 160
I Introduction 160
II The Born-Oppenheimer Approximation 161
III Nuclear Motion of Diatomic Molecules 164
IV The Hydrogen Molecular Ion 169
V The Hydrogen Molecule 173
VI The Chemical Bond 176
VII The Structures of Some Simple Polyatomic Molecules 179
VIII The Hückel Molecular Orbital Method 183
IX Problems 189
Index 191
1 The Discovery of Quantum Mechanics 1
I Introduction 1
II Planck and Quantization 3
III Bohr and the Hydrogen Atom 7
IV Matrix Mechanics 11
V The Uncertainty Relations 13
VI Wave Mechanics 14
VII The Final Touches of Quantum Mechanics 20
VIII Concluding Remarks 22
2 The Mathematics of Quantum Mechanics 23
I Introduction 23
II Differential Equations 24
III Kummer's Function 25
IV Matrices 27
V Permutations 30
VI Determinants 31
VII Properties of Determinants 32
VIII Linear Equations and Eigenvalues 35
IX Problems 37
3 Classical Mechanics 39
I Introduction 39
II Vectors and Vector Fields 40
III Hamiltonian Mechanics 43
IV The Classical Harmonic Oscillator 44
V Angular Momentum 45
VI Polar Coordinates 49
VII Problems 51
4 Wave Mechanics of a Free Particle 52
I Introduction 52
II The Mathematics of Plane Waves 53
III The Schrödinger Equation of a Free Particle 54
IV The Interpretation of the Wave Function 56
V Wave Packets 58
VI Concluding Remarks 62
VII Problems 63
5 The Schrödinger Equation 64
I Introduction 64
II Operators 66
III The Particle in a Box 68
IV Concluding Remarks 71
V Problems 72
6 Applications 73
I Introduction 73
II A Particle in a Finite Box 74
III Tunneling 78
IV The Harmonic Oscillator 81
V Problems 87
7 Angular Momentum 88
I Introduction 88
II Commuting Operators 89
III Commutation Relations of the Angular Momentum 90
IV The Rigid Rotor 91
V Eigenfunctions of the Angular Momentum 93
VI Concluding Remarks 96
VII Problems 96
8 The Hydrogen Atom 98
I Introduction 98
II Solving the Schrödinger Equation 99
III Deriving the Energy Eigenvalues 101
IV The Behavior of the Eigenfunctions 103
V Problems 106
9 Approximate Methods 108
I Introduction 108
II The Variational Principle 109
III Applications of the Variational Principle 111
IV Perturbation Theory for a Nondegenerate State 113
V The Stark Effect of the Hydrogen Atom 116
VI Perturbation Theory for Degenerate States 119
VII Concluding Remarks 120
VIII Problems 120
10 The Helium Atom 122
I Introduction 122
II Experimental Developments 123
III Pauli's Exclusion Principle 126
IV The Discovery of the Electron Spin 127
V The Mathematical Description of the Electron Spin 129
VI The Exclusion Principle Revisited 132
VII Two-electron Systems 133
VIII The Helium Atom 135
IX The Helium Atom Orbitals 138
X Concluding Remarks 139
XI Problems 140
11 Atomic Structure 142
I Introduction 142
II Atomic and Molecular Wave Function 145
III The Hartree-Fock Method 146
IV Slater Orbitals 152
V Multiplet Theory 154
VI Concluding Remarks 158
VII Problems 158
12 Molecular Structure 160
I Introduction 160
II The Born-Oppenheimer Approximation 161
III Nuclear Motion of Diatomic Molecules 164
IV The Hydrogen Molecular Ion 169
V The Hydrogen Molecule 173
VI The Chemical Bond 176
VII The Structures of Some Simple Polyatomic Molecules 179
VIII The Hückel Molecular Orbital Method 183
IX Problems 189
Index 191