72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
72,95 €
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
36 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A comprehensive, modern description of Quantum Mechanics at the graduate level, focused on developing the formalism and its applications.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 11.04MB
- FamilySharing(5)
Andere Kunden interessierten sich auch für
- Completion and Unification of Quantum Mechanics with Einstein's GR Ideas PART III: Advances, Revisions and Conclusions (eBook, PDF)220,95 €
- Volodimir SimulikRelativistic Quantum Mechanics and Field Theory of Arbitrary Spin (eBook, PDF)220,95 €
- Savanna MoreauIntroductory Quantum Mechanics (eBook, PDF)45,95 €
- Subir SachdevQuantum Phases of Matter (eBook, PDF)48,95 €
- Witold A. JacakQuantum Nano-Plasmonics (eBook, PDF)121,95 €
- Harold C. Steinacker (Universitat WienQuantum Geometry, Matrix Theory, and Gravity (eBook, PDF)76,49 €
- Stavros Tavoularis (University of OttawaMeasurement in Fluid Mechanics (eBook, PDF)95,49 €
-
-
-
A comprehensive, modern description of Quantum Mechanics at the graduate level, focused on developing the formalism and its applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Erscheinungstermin: 4. August 2022
- Englisch
- ISBN-13: 9781108986199
- Artikelnr.: 70912436
- Verlag: Cambridge University Press
- Erscheinungstermin: 4. August 2022
- Englisch
- ISBN-13: 9781108986199
- Artikelnr.: 70912436
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Horäiu N¿stase is Researcher at the Institute for Theoretical Physics, State University of São Paulo. He completed his PhD at Stony Brook with Peter van Nieuwenhuizen, co-discoverer of Supergravity. While in Princeton as a postdoc, in a 2002 paper with David Berenstein and Juan Maldacena, he started the pp-wave correspondence, a sub-area of the AdS/CFT correspondence. He has written more than 100 scientific articles and 5 other books, including Introduction to the AdS/CFT Correspondence (2015), String Theory Methods for Condensed Matter Physics (2017), Classical Field Theory (2019), Introduction to Quantum Field Theory (2019), and Cosmology and String Theory (2019).
1. The mathematics of Quantum Mechanics 1: Finite dimensional Hilbert spaces
2. The mathematics of Quantum Mechanics 2: Infinite dimensional Hilbert spaces
3. The postulates of Quantum Mechanics and the Schrödinger equation
4. Two-level systems and spin 1/2, entanglement and computation
5. Position and momentum and their bases, canonical quantization, and free particles
6. The Heisenberg uncertainty principle and relations, and Gaussian wave packets
7. One dimensional problems in a potential V (x)
8. The harmonic oscillator 9. The Heisenberg picture and general pictures
evolution operator
10. The Feynman path integral and propagators
11. The classical limit and Hamilton-Jacobi (the WKB method), Ehrenfest theorem
12. Symmetries in quantum mechanics I: Continuous symmetries
13. Symmetries in quantum mechanics II: Discrete symmetries and internal symmetries
14. Theory of angular momentum I: operators, algebras, representations
15. Theory of angular momentum II: addition of angular momenta and representations
oscillator model
16. Applications of angular momentum theory: tensor operators, wave functions and the Schrödinger equation, free particles
17. Spin and L + S
18. The Hydrogen atom
19. General central potential and 3 dimensional (isotropic) harmonic oscillator
20. Systems of identical particles
21. Application of identical particles: He atom (2-electron system) and H2 molecule
22. Quantum mechanics interacting with classical electromagnetism
23. Aharonov-Bohm effect and Berry phase in quantum mechanics
24. Motion in a magnetic field, Hall effect and Landau levels
25. The WKB and semiclassical approximation
26. Bohr-Sommerfeld quantization
27. Dirac quantization condition and magnetic monopole
s 28. Path integrals II: imaginary time and fermionic path integral
29. General theory of quantization of classical mechanics and (Dirac) quantization of constrained systems
30. Quantum entanglement and the EPR paradox
31. The interpretation of quantum mechanics and Bell's inequalities
32. Quantum statistical mechanics and tracing over a subspace
33. Elements of quantum information and quantum computing
34. Quantum complexity and quantum chaos
35. Quantum decoherence and quantum thermalization
36. Time-independent (stationary) perturbation theory: nondegenerate, degenerate, and formal cases
37. Time dependent perturbation theory: first order
38. Time-dependent perturbation theory: second and all orders
39. Application: interaction with (classical) electromagnetic field, absorption, photoelectric and Zeeman effect
40. WKB methods and extensions: state transitions and Euclidean path integrals (instantons)
41. Variational methods
42. Atoms and molecules, orbitals and chemical bonds: Quantum chemistry
43. Nuclear liquid droplet and shell models
44. Interaction of atoms with electromagnetic radiation: transitions and lasers
45. One-dimensional scattering, transfer and S matrices
46. Three dimensional Lippmann-Schwinger equation, scattering amplitudes and cross-sections
47. Born approximation and series, S- and T-matrix
48. Partial wave expansion, phase shift method and scattering length
49. Unitarity, optics and the optical theorem
50. Low energy and bound states, analytical properties of scattering amplitudes
51. Resonances and scattering, complex k and l
52. The semiclassical: WKB and eikonal approximations for scattering
53. Inelastic scattering
54. The Dirac equation
55. Multi-particle states in atoms and condensed matter: Schrödinger vs. occupation number
56. Fock space calculation with field operators
57. The Hartree-Fock approximation and other occupation number approximations
58. Nonstandard statistics: anyons and nonabelions.
2. The mathematics of Quantum Mechanics 2: Infinite dimensional Hilbert spaces
3. The postulates of Quantum Mechanics and the Schrödinger equation
4. Two-level systems and spin 1/2, entanglement and computation
5. Position and momentum and their bases, canonical quantization, and free particles
6. The Heisenberg uncertainty principle and relations, and Gaussian wave packets
7. One dimensional problems in a potential V (x)
8. The harmonic oscillator 9. The Heisenberg picture and general pictures
evolution operator
10. The Feynman path integral and propagators
11. The classical limit and Hamilton-Jacobi (the WKB method), Ehrenfest theorem
12. Symmetries in quantum mechanics I: Continuous symmetries
13. Symmetries in quantum mechanics II: Discrete symmetries and internal symmetries
14. Theory of angular momentum I: operators, algebras, representations
15. Theory of angular momentum II: addition of angular momenta and representations
oscillator model
16. Applications of angular momentum theory: tensor operators, wave functions and the Schrödinger equation, free particles
17. Spin and L + S
18. The Hydrogen atom
19. General central potential and 3 dimensional (isotropic) harmonic oscillator
20. Systems of identical particles
21. Application of identical particles: He atom (2-electron system) and H2 molecule
22. Quantum mechanics interacting with classical electromagnetism
23. Aharonov-Bohm effect and Berry phase in quantum mechanics
24. Motion in a magnetic field, Hall effect and Landau levels
25. The WKB and semiclassical approximation
26. Bohr-Sommerfeld quantization
27. Dirac quantization condition and magnetic monopole
s 28. Path integrals II: imaginary time and fermionic path integral
29. General theory of quantization of classical mechanics and (Dirac) quantization of constrained systems
30. Quantum entanglement and the EPR paradox
31. The interpretation of quantum mechanics and Bell's inequalities
32. Quantum statistical mechanics and tracing over a subspace
33. Elements of quantum information and quantum computing
34. Quantum complexity and quantum chaos
35. Quantum decoherence and quantum thermalization
36. Time-independent (stationary) perturbation theory: nondegenerate, degenerate, and formal cases
37. Time dependent perturbation theory: first order
38. Time-dependent perturbation theory: second and all orders
39. Application: interaction with (classical) electromagnetic field, absorption, photoelectric and Zeeman effect
40. WKB methods and extensions: state transitions and Euclidean path integrals (instantons)
41. Variational methods
42. Atoms and molecules, orbitals and chemical bonds: Quantum chemistry
43. Nuclear liquid droplet and shell models
44. Interaction of atoms with electromagnetic radiation: transitions and lasers
45. One-dimensional scattering, transfer and S matrices
46. Three dimensional Lippmann-Schwinger equation, scattering amplitudes and cross-sections
47. Born approximation and series, S- and T-matrix
48. Partial wave expansion, phase shift method and scattering length
49. Unitarity, optics and the optical theorem
50. Low energy and bound states, analytical properties of scattering amplitudes
51. Resonances and scattering, complex k and l
52. The semiclassical: WKB and eikonal approximations for scattering
53. Inelastic scattering
54. The Dirac equation
55. Multi-particle states in atoms and condensed matter: Schrödinger vs. occupation number
56. Fock space calculation with field operators
57. The Hartree-Fock approximation and other occupation number approximations
58. Nonstandard statistics: anyons and nonabelions.
1. The mathematics of Quantum Mechanics 1: Finite dimensional Hilbert spaces
2. The mathematics of Quantum Mechanics 2: Infinite dimensional Hilbert spaces
3. The postulates of Quantum Mechanics and the Schrödinger equation
4. Two-level systems and spin 1/2, entanglement and computation
5. Position and momentum and their bases, canonical quantization, and free particles
6. The Heisenberg uncertainty principle and relations, and Gaussian wave packets
7. One dimensional problems in a potential V (x)
8. The harmonic oscillator 9. The Heisenberg picture and general pictures
evolution operator
10. The Feynman path integral and propagators
11. The classical limit and Hamilton-Jacobi (the WKB method), Ehrenfest theorem
12. Symmetries in quantum mechanics I: Continuous symmetries
13. Symmetries in quantum mechanics II: Discrete symmetries and internal symmetries
14. Theory of angular momentum I: operators, algebras, representations
15. Theory of angular momentum II: addition of angular momenta and representations
oscillator model
16. Applications of angular momentum theory: tensor operators, wave functions and the Schrödinger equation, free particles
17. Spin and L + S
18. The Hydrogen atom
19. General central potential and 3 dimensional (isotropic) harmonic oscillator
20. Systems of identical particles
21. Application of identical particles: He atom (2-electron system) and H2 molecule
22. Quantum mechanics interacting with classical electromagnetism
23. Aharonov-Bohm effect and Berry phase in quantum mechanics
24. Motion in a magnetic field, Hall effect and Landau levels
25. The WKB and semiclassical approximation
26. Bohr-Sommerfeld quantization
27. Dirac quantization condition and magnetic monopole
s 28. Path integrals II: imaginary time and fermionic path integral
29. General theory of quantization of classical mechanics and (Dirac) quantization of constrained systems
30. Quantum entanglement and the EPR paradox
31. The interpretation of quantum mechanics and Bell's inequalities
32. Quantum statistical mechanics and tracing over a subspace
33. Elements of quantum information and quantum computing
34. Quantum complexity and quantum chaos
35. Quantum decoherence and quantum thermalization
36. Time-independent (stationary) perturbation theory: nondegenerate, degenerate, and formal cases
37. Time dependent perturbation theory: first order
38. Time-dependent perturbation theory: second and all orders
39. Application: interaction with (classical) electromagnetic field, absorption, photoelectric and Zeeman effect
40. WKB methods and extensions: state transitions and Euclidean path integrals (instantons)
41. Variational methods
42. Atoms and molecules, orbitals and chemical bonds: Quantum chemistry
43. Nuclear liquid droplet and shell models
44. Interaction of atoms with electromagnetic radiation: transitions and lasers
45. One-dimensional scattering, transfer and S matrices
46. Three dimensional Lippmann-Schwinger equation, scattering amplitudes and cross-sections
47. Born approximation and series, S- and T-matrix
48. Partial wave expansion, phase shift method and scattering length
49. Unitarity, optics and the optical theorem
50. Low energy and bound states, analytical properties of scattering amplitudes
51. Resonances and scattering, complex k and l
52. The semiclassical: WKB and eikonal approximations for scattering
53. Inelastic scattering
54. The Dirac equation
55. Multi-particle states in atoms and condensed matter: Schrödinger vs. occupation number
56. Fock space calculation with field operators
57. The Hartree-Fock approximation and other occupation number approximations
58. Nonstandard statistics: anyons and nonabelions.
2. The mathematics of Quantum Mechanics 2: Infinite dimensional Hilbert spaces
3. The postulates of Quantum Mechanics and the Schrödinger equation
4. Two-level systems and spin 1/2, entanglement and computation
5. Position and momentum and their bases, canonical quantization, and free particles
6. The Heisenberg uncertainty principle and relations, and Gaussian wave packets
7. One dimensional problems in a potential V (x)
8. The harmonic oscillator 9. The Heisenberg picture and general pictures
evolution operator
10. The Feynman path integral and propagators
11. The classical limit and Hamilton-Jacobi (the WKB method), Ehrenfest theorem
12. Symmetries in quantum mechanics I: Continuous symmetries
13. Symmetries in quantum mechanics II: Discrete symmetries and internal symmetries
14. Theory of angular momentum I: operators, algebras, representations
15. Theory of angular momentum II: addition of angular momenta and representations
oscillator model
16. Applications of angular momentum theory: tensor operators, wave functions and the Schrödinger equation, free particles
17. Spin and L + S
18. The Hydrogen atom
19. General central potential and 3 dimensional (isotropic) harmonic oscillator
20. Systems of identical particles
21. Application of identical particles: He atom (2-electron system) and H2 molecule
22. Quantum mechanics interacting with classical electromagnetism
23. Aharonov-Bohm effect and Berry phase in quantum mechanics
24. Motion in a magnetic field, Hall effect and Landau levels
25. The WKB and semiclassical approximation
26. Bohr-Sommerfeld quantization
27. Dirac quantization condition and magnetic monopole
s 28. Path integrals II: imaginary time and fermionic path integral
29. General theory of quantization of classical mechanics and (Dirac) quantization of constrained systems
30. Quantum entanglement and the EPR paradox
31. The interpretation of quantum mechanics and Bell's inequalities
32. Quantum statistical mechanics and tracing over a subspace
33. Elements of quantum information and quantum computing
34. Quantum complexity and quantum chaos
35. Quantum decoherence and quantum thermalization
36. Time-independent (stationary) perturbation theory: nondegenerate, degenerate, and formal cases
37. Time dependent perturbation theory: first order
38. Time-dependent perturbation theory: second and all orders
39. Application: interaction with (classical) electromagnetic field, absorption, photoelectric and Zeeman effect
40. WKB methods and extensions: state transitions and Euclidean path integrals (instantons)
41. Variational methods
42. Atoms and molecules, orbitals and chemical bonds: Quantum chemistry
43. Nuclear liquid droplet and shell models
44. Interaction of atoms with electromagnetic radiation: transitions and lasers
45. One-dimensional scattering, transfer and S matrices
46. Three dimensional Lippmann-Schwinger equation, scattering amplitudes and cross-sections
47. Born approximation and series, S- and T-matrix
48. Partial wave expansion, phase shift method and scattering length
49. Unitarity, optics and the optical theorem
50. Low energy and bound states, analytical properties of scattering amplitudes
51. Resonances and scattering, complex k and l
52. The semiclassical: WKB and eikonal approximations for scattering
53. Inelastic scattering
54. The Dirac equation
55. Multi-particle states in atoms and condensed matter: Schrödinger vs. occupation number
56. Fock space calculation with field operators
57. The Hartree-Fock approximation and other occupation number approximations
58. Nonstandard statistics: anyons and nonabelions.