The covariant (4-tensor) theory for relativistic quantum plasmas presented in the first volume is generalized to magnetized plasma in this second volume. The first four chapters are concerned with classical theory, including covariant forms of cold-plasma, MHD and kinetic theory and the theory of gyromagnetic emission. The response 4-tensor for an arbitrary distribution is evaluated, using both the forward-scattering and Vlasov methods, applied to a relativistic thermal distribution and used to discuss wave dispersion in relativistic magnetized plasmas. In the second half of the book, solutions of Dirac's equation for a magnetized electron are used to develop a magnetized version of QED. This form of QED is applied to gyromagnetic processes, the response of the magnetized vacuum and the response of a magnetized electron gas. The theory has a potentially wide range of applications, such as super-strong magnetic fields in pulsars, high-powered lasers and spin-dependence in a laboratory electron gas.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
From the reviews: "The ten chapters and 464 pages book is one of Lecture Notes Series of Monographs on Physics and gives the best introduction to the quantum electrodynamics and the kinetic theory relativistic and non-relativistic charged particles. The author of the book is focusing on interactions between charged particles and the electromagnetic field. ... Materials of the most important part of the book are supported by illustrations. ... useful for advanced graduate students, scientists and all who are interesting on the plasma physics and the confinement systems." (M. J. Canfell, Zentralblatt MATH, Vol. 1158, 2009)