36,95 €
36,95 €
inkl. MwSt.
Sofort per Download lieferbar
18 °P sammeln
36,95 €
Als Download kaufen
36,95 €
inkl. MwSt.
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
36,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book takes the reader through the process of learning and creating data visualisation, starting with a selection of basic principles. Each easy-to-follow chapter poses one key question and provides an array of valuable answers, including data visualisation examples throughout.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 38.36MB
Andere Kunden interessierten sich auch für
- Neil RichardsQuestions in Dataviz (eBook, PDF)36,95 €
- Nigel HolmesJoyful Infographics (eBook, ePUB)24,95 €
- Nigel HolmesJoyful Infographics (eBook, PDF)24,95 €
- Jen ChristiansenBuilding Science Graphics (eBook, PDF)40,95 €
- Tamara MunznerVisualization Analysis and Design (eBook, ePUB)72,95 €
- Theresa-Marie RhyneApplying Color Theory to Digital Media and Visualization (eBook, ePUB)59,95 €
- Nancy OrganData Visualization for People of All Ages (eBook, ePUB)28,95 €
-
-
-
This book takes the reader through the process of learning and creating data visualisation, starting with a selection of basic principles. Each easy-to-follow chapter poses one key question and provides an array of valuable answers, including data visualisation examples throughout.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 366
- Erscheinungstermin: 2. November 2022
- Englisch
- ISBN-13: 9781000755848
- Artikelnr.: 65653873
- Verlag: Taylor & Francis
- Seitenzahl: 366
- Erscheinungstermin: 2. November 2022
- Englisch
- ISBN-13: 9781000755848
- Artikelnr.: 65653873
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Neil Richards is a data visualisation specialist and enthusiast with over twenty-five years' experience in the data industry. Through his regular personal creative data visualisation projects, he has been awarded the title of Tableau Visionary (formerly Tableau Zen Master) a total of four times, and is a regular speaker at data visualisation conferences and user groups. Formerly Knowledge Director for the Data Visualization Society, he also sits on the Board of data visualisation non-profit Viz For Social Good.
Neil works as a Lead Business Intelligence Analyst at JLL and has a BSc. in Mathematics and a BA in Environmental Studies. He lives in Derbyshire in the United Kingdom.
Neil works as a Lead Business Intelligence Analyst at JLL and has a BSc. in Mathematics and a BA in Environmental Studies. He lives in Derbyshire in the United Kingdom.
Preface. Author. Introduction. SECTION I First Questions. Chapter 1.1
Should the data drive the visualisation? Chapter 1.2 What's in a colour?
Chapter 1.3 What does data visualisation have in common with psychology?
Chapter 1.4 Do data visualisations have to tell a story? Chapter 1.5 Is it
OK to steal? Chapter 1.6 Is white space always your friend? Section II
Challenging. Questions Chapter 2.1 Why do we visualise data? Chapter 2.2
Why do we visualise using triangles? Chapter 2.3 Does it matter if shapes
overlap? Chapter 2.4 What is data humanism? Chapter 2.5 What is
design-driven data? Chapter 2.6 Do we take data visualisation too
seriously? Chapter 2.7 Why create unnecessary data visualisations? Chapter
2.8 When are several visualisations better than one? Chapter 2.9 What can I
do when data is impossible to find? Section III Idea Questions. Chapter 3.1
What is the third wave of data visualisation? Chapter 3.2 What alternative
ways are there for visualizing timelines? Chapter 3.3 Why do I use flowers
to visualise data? Chapter 3.4 What are Data Portraits? Chapter 3.5 How can
I take inspiration from album covers? Chapter 3.6 How many ways can you
tile the United States? Chapter 3.7 Is it possible to tile the world?
Chapter 3.8 Can you create visualisations using only numbers? Chapter 3.9
How do you visualise music? Chapter 3.10 What are Truchet tiles? Chapter
3.11 How do you create 31 visualisations in a month? Index.
Should the data drive the visualisation? Chapter 1.2 What's in a colour?
Chapter 1.3 What does data visualisation have in common with psychology?
Chapter 1.4 Do data visualisations have to tell a story? Chapter 1.5 Is it
OK to steal? Chapter 1.6 Is white space always your friend? Section II
Challenging. Questions Chapter 2.1 Why do we visualise data? Chapter 2.2
Why do we visualise using triangles? Chapter 2.3 Does it matter if shapes
overlap? Chapter 2.4 What is data humanism? Chapter 2.5 What is
design-driven data? Chapter 2.6 Do we take data visualisation too
seriously? Chapter 2.7 Why create unnecessary data visualisations? Chapter
2.8 When are several visualisations better than one? Chapter 2.9 What can I
do when data is impossible to find? Section III Idea Questions. Chapter 3.1
What is the third wave of data visualisation? Chapter 3.2 What alternative
ways are there for visualizing timelines? Chapter 3.3 Why do I use flowers
to visualise data? Chapter 3.4 What are Data Portraits? Chapter 3.5 How can
I take inspiration from album covers? Chapter 3.6 How many ways can you
tile the United States? Chapter 3.7 Is it possible to tile the world?
Chapter 3.8 Can you create visualisations using only numbers? Chapter 3.9
How do you visualise music? Chapter 3.10 What are Truchet tiles? Chapter
3.11 How do you create 31 visualisations in a month? Index.
Preface. Author. Introduction. SECTION I First Questions. Chapter 1.1
Should the data drive the visualisation? Chapter 1.2 What's in a colour?
Chapter 1.3 What does data visualisation have in common with psychology?
Chapter 1.4 Do data visualisations have to tell a story? Chapter 1.5 Is it
OK to steal? Chapter 1.6 Is white space always your friend? Section II
Challenging. Questions Chapter 2.1 Why do we visualise data? Chapter 2.2
Why do we visualise using triangles? Chapter 2.3 Does it matter if shapes
overlap? Chapter 2.4 What is data humanism? Chapter 2.5 What is
design-driven data? Chapter 2.6 Do we take data visualisation too
seriously? Chapter 2.7 Why create unnecessary data visualisations? Chapter
2.8 When are several visualisations better than one? Chapter 2.9 What can I
do when data is impossible to find? Section III Idea Questions. Chapter 3.1
What is the third wave of data visualisation? Chapter 3.2 What alternative
ways are there for visualizing timelines? Chapter 3.3 Why do I use flowers
to visualise data? Chapter 3.4 What are Data Portraits? Chapter 3.5 How can
I take inspiration from album covers? Chapter 3.6 How many ways can you
tile the United States? Chapter 3.7 Is it possible to tile the world?
Chapter 3.8 Can you create visualisations using only numbers? Chapter 3.9
How do you visualise music? Chapter 3.10 What are Truchet tiles? Chapter
3.11 How do you create 31 visualisations in a month? Index.
Should the data drive the visualisation? Chapter 1.2 What's in a colour?
Chapter 1.3 What does data visualisation have in common with psychology?
Chapter 1.4 Do data visualisations have to tell a story? Chapter 1.5 Is it
OK to steal? Chapter 1.6 Is white space always your friend? Section II
Challenging. Questions Chapter 2.1 Why do we visualise data? Chapter 2.2
Why do we visualise using triangles? Chapter 2.3 Does it matter if shapes
overlap? Chapter 2.4 What is data humanism? Chapter 2.5 What is
design-driven data? Chapter 2.6 Do we take data visualisation too
seriously? Chapter 2.7 Why create unnecessary data visualisations? Chapter
2.8 When are several visualisations better than one? Chapter 2.9 What can I
do when data is impossible to find? Section III Idea Questions. Chapter 3.1
What is the third wave of data visualisation? Chapter 3.2 What alternative
ways are there for visualizing timelines? Chapter 3.3 Why do I use flowers
to visualise data? Chapter 3.4 What are Data Portraits? Chapter 3.5 How can
I take inspiration from album covers? Chapter 3.6 How many ways can you
tile the United States? Chapter 3.7 Is it possible to tile the world?
Chapter 3.8 Can you create visualisations using only numbers? Chapter 3.9
How do you visualise music? Chapter 3.10 What are Truchet tiles? Chapter
3.11 How do you create 31 visualisations in a month? Index.