Radiationless Transitions is a critical discussion of research studies on the theory and experiments in radiationless transitions.
This book is composed of nine chapters, and begins with discussions on the theory and experiment of photophysical processes of single vibronic levels and/or single rovibronic levels. The subsequent chapters deal with the spectroscopic investigations of intramolecular vibrational relaxation; the dynamics of molecular excitation by light; and the photophysical processes of small molecules in condensed phase. The discussions then shift to the high pressure effects on molecular luminescence and the internal conversion involving localized excitations, presenting one qualitative and one quantitative example, as well as the intersystem crossing with localized excitations. A chapter explores the energy transfer processes that occur after a molecule in solution is excited by light, with an emphasis on solid solutions in which the large amplitude molecular motion is largely quenched. This chapter also looks into the liquid solutions in which the molecules can translate and rotate under the influence of fluctuating forces from the liquid. The concluding chapter focuses on ultrafast processes.
Researchers in the fields of physics, chemistry, and biology will benefit from this book.
This book is composed of nine chapters, and begins with discussions on the theory and experiment of photophysical processes of single vibronic levels and/or single rovibronic levels. The subsequent chapters deal with the spectroscopic investigations of intramolecular vibrational relaxation; the dynamics of molecular excitation by light; and the photophysical processes of small molecules in condensed phase. The discussions then shift to the high pressure effects on molecular luminescence and the internal conversion involving localized excitations, presenting one qualitative and one quantitative example, as well as the intersystem crossing with localized excitations. A chapter explores the energy transfer processes that occur after a molecule in solution is excited by light, with an emphasis on solid solutions in which the large amplitude molecular motion is largely quenched. This chapter also looks into the liquid solutions in which the molecules can translate and rotate under the influence of fluctuating forces from the liquid. The concluding chapter focuses on ultrafast processes.
Researchers in the fields of physics, chemistry, and biology will benefit from this book.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.