48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

This comprehensive overview details the process of radiopharmaceutical development, from cellular studies to animal experiments to the design and implementation of clinical trials. It compares various radiopharmaceuticals and provides guidance on dose estimation and agent selection, covering standard medical internal radiation dose (MIRD), absorbed dose method for imaging agents, in vivo methods for obtaining activity data, errors of activity estimation techniques, and phantom-based and patient-based dose estimates. Backed by examples from clinical trials, it discusses two and three…mehr

Produktbeschreibung
This comprehensive overview details the process of radiopharmaceutical development, from cellular studies to animal experiments to the design and implementation of clinical trials. It compares various radiopharmaceuticals and provides guidance on dose estimation and agent selection, covering standard medical internal radiation dose (MIRD), absorbed dose method for imaging agents, in vivo methods for obtaining activity data, errors of activity estimation techniques, and phantom-based and patient-based dose estimates. Backed by examples from clinical trials, it discusses two and three dimensional estimation processes, including the use of modern hybrid scanners such as SPECT /CT and PET/CT.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Lawrence E. Williams, Ph.D., is a professor of radiology and an imaging physicist
at City of Hope National Medical Center in Duarte, California. In addition, he is an
adjunct professor of radiology at University of California-Los Angeles (UCLA).

While in high school, he was one of 40 national winners of the Westinghouse (now
Intel) Science Talent Search. Dr. Williams obtained his B.S. from Carnegie Mellon
University and his M.S. and Ph.D. degrees (both in physics) from the University of
Minnesota, where he was a National Science Foundation (NSF) fellow. His initial
graduate training was in nuclear reactions at Minnesota, where he demonstrated
excited states of the mass-4 system (4He*). He later extended this work by finding
excited levels of mass-3 nuclides while working at the Rutherford High Energy
Laboratory in England. Since obtaining the National Institutes of Health (NIH) support
to become a medical physicist, Dr. Williams has devoted most of his research to
tumor detection and treatment and has written approximately 250 total publications
as well as a number of patents in nuclear imaging and radionuclide therapy. He is a
coauthor of Biophysical Science (Prentice Hall, 1979) and editor of Nuclear Medicine
Physics (CRC Press, 1987). He has been a grant and site reviewer for NIH since the
mid-1990s. Dr. Williams is associate editor of Medical Physics and a reviewer for
several other journals. He is a member of the American Association of Physicists
in Medicine (AAPM), the Society of Nuclear Medicine, the New York Academy of
Sciences, Sigma Xi, Society of Imaging Informatics in Medicine (SIIM), and the
Society of Breast Imaging. Dr. Williams has received a lifetime service award from
the American Board of Radiology.

Among Dr. Williams' most significant biophysical discoveries is the mass-law
for tumor uptake as a function of tumor size. He was also codiscoverer (with Richard
Proffitt) of tumor targeting with liposomes. This work involved one of the first applications of normal organ blockage by use of an unlabeled agent-that is, a two-step
process. Dr. Williams has developed a pair of indices for quantifying the ability of a
radiopharmaceutical to permit imaging or therapy of lesions in animals or patients. He
has also demonstrated that radioactive decay must be considered inherently as one possible exit route in modeling analysis of radioactive drugs. With his colleagues at City of Hope, Dr. Williams measured and calculated the brake radiation dose result for a source of 90Y in a humanoid phantom. This study remains as one of the few examples of a comparison of dose estimates and measurement in the nuclear medicine literature.