Jacques Gasqui
Radon Transforms and the Rigidity of the Grassmannians (AM-156) (eBook, ePUB)
86,95 €
86,95 €
inkl. MwSt.
Sofort per Download lieferbar
43 °P sammeln
86,95 €
Als Download kaufen
86,95 €
inkl. MwSt.
Sofort per Download lieferbar
43 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
86,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
43 °P sammeln
Jacques Gasqui
Radon Transforms and the Rigidity of the Grassmannians (AM-156) (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 27.6MB
- FamilySharing(5)
Andere Kunden interessierten sich auch für
- Jean-Michel BismutHypoelliptic Laplacian and Orbital Integrals (AM-177) (eBook, ePUB)56,95 €
- Charles FeffermanAmbient Metric (AM-178) (eBook, ePUB)49,95 €
- Kenneth HardyThe Green Book of Mathematical Problems (eBook, ePUB)9,95 €
- Roland DeauxIntroduction to the Geometry of Complex Numbers (eBook, ePUB)9,95 €
- Robert G. BillGeometry, Geodesics, and the Universe (eBook, ePUB)2,99 €
- Matthew J. PallamaryThe Infinity Zone: A Transcendent Approach to Peak Performance (eBook, ePUB)2,99 €
- Steven G. KrantzThe Theory and Practice of Conformal Geometry (eBook, ePUB)18,95 €
-
-
-
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
>1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
>1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
Produktdetails
- Produktdetails
- Verlag: Princeton University Press
- Seitenzahl: 384
- Erscheinungstermin: 10. Januar 2009
- Englisch
- ISBN-13: 9781400826179
- Artikelnr.: 56799627
- Verlag: Princeton University Press
- Seitenzahl: 384
- Erscheinungstermin: 10. Januar 2009
- Englisch
- ISBN-13: 9781400826179
- Artikelnr.: 56799627
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Jacques Gasqui is Professor of Mathematics at Institut Fourier, Université de Grenoble I. Hubert Goldschmidt is Visiting Professor of Mathematics at Columbia University and Professeur des Universités in France.
Introduction ix CHAPTER I. Symmetric spaces and Einstein manifolds 1.
Riemannian manifolds 1 2. Einstein manifolds 15 3. Symmetric spaces 19 4.
Complex manifolds 27
CHAPTER II. Radon transforms on symmetric spaces 1. Outline 32 2.
Homogeneous vector bundles and harmonic analysis 32 3. The Guillemin and
zero-energy conditions 36 4. Radon transforms 41 5. Radon transforms and
harmonic analysis 50 6. Lie algebras 58 7. Irreducible symmetric spaces 59
8. Criteria for the rigidity of an irreducible symmetric space 68
CHAPTER III. Symmetric spaces of rank one 1. Flat tori 75 2. The projective
spaces 83 3. The real projective space 89 4. The complex projective space
94 5. The rigidity of the complex projective space 104 6. The other
projective spaces 112
CHAPTER IV. The real Grassmannians 1. The real Grassmannians 114 2. The
Guillemin condition on the real Grassmannians 126
CHAPTER V. The Complex Quadradic 1. Outline 134 2. The complex quadric
viewed as a symmetric space 134 3. The complex quadric viewed as a complex
hypersurface 138 4. Local Kähler geometry of the complex quadric 146 5. The
complex quadric and the real Grassmannians 152 6. Totally geodesic surfaces
and the infinitesimal orbit of the curvature 159 7. Multiplicities 170 8.
Vanishing results for symmetric forms 185 9. The complex quadric of
dimension two 190
CHAPTER VI. The rigidity of the complex quadric 1. Outline 193 2. Total
geodesic at tori of the complex quadric 194 3. Symmetric forms on the
complex quadric 199 4. Computing integrals of symmetric forms 204 5.
Computing integrals of odd symmetric forms 209 6. Bounds for the dimensions
of spaces of symmetric forms 218 7. The complex quadric of dimension three
223 8. The rigidity of the complex quadric 229 9. Other proofs of the
infinitesimal rigidity of the quadric 232 10. The complex quadric of
dimension four 234 11. Forms of degree one 237
CHAPTER VII. The rigidity of the real Grassmannians 1. The rigidity of the
real Grassmannians 244 2. The real Grassmannians 249
CHAPTER VIII. The complex Grassmannians 1. Outline 257 2. The complex
Grassmannians 258 3. Highest weights of irreducible modules associated with
the complex Grassmannians 270 4. Functions and forms on the complex
Grassmannians 274 5. The complex Grassmannians of rank two 282 6. The
Guillemin condition on the complex Grassmannians 287 7. Integrals of forms
on the complex Grassmannians 293 8. Relations among forms on the complex
Grassmannians 300 9. The complex Grassmannians 303
CHAPTER IX. The rigidity of the complex Grassmannians 1. The rigidity of
the complex Grassmannians 308 2. On the rigidity of the complex
Grassmannians 313 3. The rigidity of the quaternionic Grassmannians 323
CHAPTER X. Products of symmetric spaces 1. Guillemin rigidity and products
of symmetric spaces 329 2. Conformally at symmetric spaces 334 3.
Infinitesimal rigidity of products of symmetric spaces 338 4. The
infinitesimal rigidity of G 340
References 357 Index 363
Riemannian manifolds 1 2. Einstein manifolds 15 3. Symmetric spaces 19 4.
Complex manifolds 27
CHAPTER II. Radon transforms on symmetric spaces 1. Outline 32 2.
Homogeneous vector bundles and harmonic analysis 32 3. The Guillemin and
zero-energy conditions 36 4. Radon transforms 41 5. Radon transforms and
harmonic analysis 50 6. Lie algebras 58 7. Irreducible symmetric spaces 59
8. Criteria for the rigidity of an irreducible symmetric space 68
CHAPTER III. Symmetric spaces of rank one 1. Flat tori 75 2. The projective
spaces 83 3. The real projective space 89 4. The complex projective space
94 5. The rigidity of the complex projective space 104 6. The other
projective spaces 112
CHAPTER IV. The real Grassmannians 1. The real Grassmannians 114 2. The
Guillemin condition on the real Grassmannians 126
CHAPTER V. The Complex Quadradic 1. Outline 134 2. The complex quadric
viewed as a symmetric space 134 3. The complex quadric viewed as a complex
hypersurface 138 4. Local Kähler geometry of the complex quadric 146 5. The
complex quadric and the real Grassmannians 152 6. Totally geodesic surfaces
and the infinitesimal orbit of the curvature 159 7. Multiplicities 170 8.
Vanishing results for symmetric forms 185 9. The complex quadric of
dimension two 190
CHAPTER VI. The rigidity of the complex quadric 1. Outline 193 2. Total
geodesic at tori of the complex quadric 194 3. Symmetric forms on the
complex quadric 199 4. Computing integrals of symmetric forms 204 5.
Computing integrals of odd symmetric forms 209 6. Bounds for the dimensions
of spaces of symmetric forms 218 7. The complex quadric of dimension three
223 8. The rigidity of the complex quadric 229 9. Other proofs of the
infinitesimal rigidity of the quadric 232 10. The complex quadric of
dimension four 234 11. Forms of degree one 237
CHAPTER VII. The rigidity of the real Grassmannians 1. The rigidity of the
real Grassmannians 244 2. The real Grassmannians 249
CHAPTER VIII. The complex Grassmannians 1. Outline 257 2. The complex
Grassmannians 258 3. Highest weights of irreducible modules associated with
the complex Grassmannians 270 4. Functions and forms on the complex
Grassmannians 274 5. The complex Grassmannians of rank two 282 6. The
Guillemin condition on the complex Grassmannians 287 7. Integrals of forms
on the complex Grassmannians 293 8. Relations among forms on the complex
Grassmannians 300 9. The complex Grassmannians 303
CHAPTER IX. The rigidity of the complex Grassmannians 1. The rigidity of
the complex Grassmannians 308 2. On the rigidity of the complex
Grassmannians 313 3. The rigidity of the quaternionic Grassmannians 323
CHAPTER X. Products of symmetric spaces 1. Guillemin rigidity and products
of symmetric spaces 329 2. Conformally at symmetric spaces 334 3.
Infinitesimal rigidity of products of symmetric spaces 338 4. The
infinitesimal rigidity of G 340
References 357 Index 363
Introduction ix CHAPTER I. Symmetric spaces and Einstein manifolds 1.
Riemannian manifolds 1 2. Einstein manifolds 15 3. Symmetric spaces 19 4.
Complex manifolds 27
CHAPTER II. Radon transforms on symmetric spaces 1. Outline 32 2.
Homogeneous vector bundles and harmonic analysis 32 3. The Guillemin and
zero-energy conditions 36 4. Radon transforms 41 5. Radon transforms and
harmonic analysis 50 6. Lie algebras 58 7. Irreducible symmetric spaces 59
8. Criteria for the rigidity of an irreducible symmetric space 68
CHAPTER III. Symmetric spaces of rank one 1. Flat tori 75 2. The projective
spaces 83 3. The real projective space 89 4. The complex projective space
94 5. The rigidity of the complex projective space 104 6. The other
projective spaces 112
CHAPTER IV. The real Grassmannians 1. The real Grassmannians 114 2. The
Guillemin condition on the real Grassmannians 126
CHAPTER V. The Complex Quadradic 1. Outline 134 2. The complex quadric
viewed as a symmetric space 134 3. The complex quadric viewed as a complex
hypersurface 138 4. Local Kähler geometry of the complex quadric 146 5. The
complex quadric and the real Grassmannians 152 6. Totally geodesic surfaces
and the infinitesimal orbit of the curvature 159 7. Multiplicities 170 8.
Vanishing results for symmetric forms 185 9. The complex quadric of
dimension two 190
CHAPTER VI. The rigidity of the complex quadric 1. Outline 193 2. Total
geodesic at tori of the complex quadric 194 3. Symmetric forms on the
complex quadric 199 4. Computing integrals of symmetric forms 204 5.
Computing integrals of odd symmetric forms 209 6. Bounds for the dimensions
of spaces of symmetric forms 218 7. The complex quadric of dimension three
223 8. The rigidity of the complex quadric 229 9. Other proofs of the
infinitesimal rigidity of the quadric 232 10. The complex quadric of
dimension four 234 11. Forms of degree one 237
CHAPTER VII. The rigidity of the real Grassmannians 1. The rigidity of the
real Grassmannians 244 2. The real Grassmannians 249
CHAPTER VIII. The complex Grassmannians 1. Outline 257 2. The complex
Grassmannians 258 3. Highest weights of irreducible modules associated with
the complex Grassmannians 270 4. Functions and forms on the complex
Grassmannians 274 5. The complex Grassmannians of rank two 282 6. The
Guillemin condition on the complex Grassmannians 287 7. Integrals of forms
on the complex Grassmannians 293 8. Relations among forms on the complex
Grassmannians 300 9. The complex Grassmannians 303
CHAPTER IX. The rigidity of the complex Grassmannians 1. The rigidity of
the complex Grassmannians 308 2. On the rigidity of the complex
Grassmannians 313 3. The rigidity of the quaternionic Grassmannians 323
CHAPTER X. Products of symmetric spaces 1. Guillemin rigidity and products
of symmetric spaces 329 2. Conformally at symmetric spaces 334 3.
Infinitesimal rigidity of products of symmetric spaces 338 4. The
infinitesimal rigidity of G 340
References 357 Index 363
Riemannian manifolds 1 2. Einstein manifolds 15 3. Symmetric spaces 19 4.
Complex manifolds 27
CHAPTER II. Radon transforms on symmetric spaces 1. Outline 32 2.
Homogeneous vector bundles and harmonic analysis 32 3. The Guillemin and
zero-energy conditions 36 4. Radon transforms 41 5. Radon transforms and
harmonic analysis 50 6. Lie algebras 58 7. Irreducible symmetric spaces 59
8. Criteria for the rigidity of an irreducible symmetric space 68
CHAPTER III. Symmetric spaces of rank one 1. Flat tori 75 2. The projective
spaces 83 3. The real projective space 89 4. The complex projective space
94 5. The rigidity of the complex projective space 104 6. The other
projective spaces 112
CHAPTER IV. The real Grassmannians 1. The real Grassmannians 114 2. The
Guillemin condition on the real Grassmannians 126
CHAPTER V. The Complex Quadradic 1. Outline 134 2. The complex quadric
viewed as a symmetric space 134 3. The complex quadric viewed as a complex
hypersurface 138 4. Local Kähler geometry of the complex quadric 146 5. The
complex quadric and the real Grassmannians 152 6. Totally geodesic surfaces
and the infinitesimal orbit of the curvature 159 7. Multiplicities 170 8.
Vanishing results for symmetric forms 185 9. The complex quadric of
dimension two 190
CHAPTER VI. The rigidity of the complex quadric 1. Outline 193 2. Total
geodesic at tori of the complex quadric 194 3. Symmetric forms on the
complex quadric 199 4. Computing integrals of symmetric forms 204 5.
Computing integrals of odd symmetric forms 209 6. Bounds for the dimensions
of spaces of symmetric forms 218 7. The complex quadric of dimension three
223 8. The rigidity of the complex quadric 229 9. Other proofs of the
infinitesimal rigidity of the quadric 232 10. The complex quadric of
dimension four 234 11. Forms of degree one 237
CHAPTER VII. The rigidity of the real Grassmannians 1. The rigidity of the
real Grassmannians 244 2. The real Grassmannians 249
CHAPTER VIII. The complex Grassmannians 1. Outline 257 2. The complex
Grassmannians 258 3. Highest weights of irreducible modules associated with
the complex Grassmannians 270 4. Functions and forms on the complex
Grassmannians 274 5. The complex Grassmannians of rank two 282 6. The
Guillemin condition on the complex Grassmannians 287 7. Integrals of forms
on the complex Grassmannians 293 8. Relations among forms on the complex
Grassmannians 300 9. The complex Grassmannians 303
CHAPTER IX. The rigidity of the complex Grassmannians 1. The rigidity of
the complex Grassmannians 308 2. On the rigidity of the complex
Grassmannians 313 3. The rigidity of the quaternionic Grassmannians 323
CHAPTER X. Products of symmetric spaces 1. Guillemin rigidity and products
of symmetric spaces 329 2. Conformally at symmetric spaces 334 3.
Infinitesimal rigidity of products of symmetric spaces 338 4. The
infinitesimal rigidity of G 340
References 357 Index 363