V. A. Vassiliev
Ramified Integrals, Singularities and Lacunas (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
V. A. Vassiliev
Ramified Integrals, Singularities and Lacunas (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 38.09MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 294
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789401102131
- Artikelnr.: 44176531
- Verlag: Springer Netherlands
- Seitenzahl: 294
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789401102131
- Artikelnr.: 44176531
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I. Picard-Lefschetz-Pham theory and singularity theory.- 1. Gauss-Manin connection in the homological bundles. Monodromy and variation operators.- 2. The Picard-Lefschetz formula. The Leray tube operator.- 3. Local monodromy of isolated singularities of holomorphic functions.- 4. Intersection form and complex conjugation in the vanishing homology of real singularities in two variables.- 5. Classification of real and complex singularities of functions.- 6. Lyashko-Looijenga covering and its generalizations.- 7. Complements of discriminants of real simple singularities (after E. Looijenga).- 8. Stratifications. Semialgebraic, semianalytic and subanalytic sets.- 9. Pham's formulae.- 10. Monodromy of hyperplane sections.- 11. Stabilization of local monodromy and variation of hyperplane sections close to strata of positive dimension (stratified Picard-Lefschetz theory).- 12. Homology of local systems. Twisted Picard-Lefschetz formulae.- 13. Singularities of complete intersections and their local monodromy groups.- II. Newton's theorem on the nonintegrability of ovals.- 1. Stating the problems and the main results.- 2. Reduction of the integrability problem to the (generalized) PicardLefschetz theory.- 3. The element "cap".- 4. Ramification of integration cycles close to nonsingular points. Generating functions and generating families of smooth hypersurfaces.- 5. Obstructions to integrability arising from the cuspidal edges. Proof of Theorem 1.8.- 6. Obstructions to integrability arising from the asymptotic hyperplanes. Proof of Theorem 1.9.- 7. Several open problems.- III. Newton's potential of algebraic layers.- 1. Theorems of Newton and Ivory.- 2. Potentials of hyperbolic layers are polynomialin the hyperbolicity domains (after Arnold and Givental).- 3. Proofs of Main Theorems 1 and 2.- 4. Description of the small monodromy group.- 5. Proof of Main Theorem 3.- IV. Lacunas and the local Petrovski$$overset{lower0.5emhbox{$smash{scriptscriptstylesmile}$}}{I}$$ condition for hyperbolic differential operators with constant coefficients.- 0. Hyperbolic polynomials.- 1. Hyperbolic operators and hyperbolic polynomials. Sharpness, diffusion and lacunas.- 2. Generating functions and generating families of wave fronts for hyperbolic operators with constant coefficients. Classification of the singular points of wave fronts.- 3. Local lacunas close to nonsingular points of fronts and to singularities A2, A3 (after Davydova, Borovikov and Gárding).- 4. Petrovskii and Leray cycles. The Herglotz-Petrovskii-Leray formula and the Petrovskii condition for global lacunas.- 5. Local Petrovskii condition and local Petrovskii cycle. The local Petrovskii condition implies sharpness (after Atiyah, Bott and Gárding).- 6. Sharpness implies the local Petrovskii condition close to discrete-type points of wave fronts of strictly hyperbolic operators.- 7. The local Petrovskii condition may be stronger than the sharpness close to singular points not of discrete type.- 8. Normal forms of nonsharpness close to singularities of wave fronts (after A.N. Varchenko).- 9. Several problems.- V. Calculation of local Petrovski$$overset{lower0.5emhbox{$smash{scriptscriptstylesmile}$}}{I}$$ cycles and enumeration of local lacunas close to real function singularities.- 1. Main theorems.- 2. Local lacunas close to singularities from the classification tables.- 3. Calculation of the even local Petrovskii class.- 4. Calculation of theodd local Petrovskii class.- 5. Stabilization of the local Petrovskii classes. Proof of Theorem 1.5.- 6. Local lacunas close to simple singularities.- 7. Geometrical criterion for sharpness close to simple singularities.- 8. A program for counting topologically different morsifications of a real singularity.- 9. More detailed description of the algorithm.- Appendix: a FORTRAN program searching for the lacunas and enumerating the morsifications of real function singularities.
I. Picard-Lefschetz-Pham theory and singularity theory.- 1. Gauss-Manin connection in the homological bundles. Monodromy and variation operators.- 2. The Picard-Lefschetz formula. The Leray tube operator.- 3. Local monodromy of isolated singularities of holomorphic functions.- 4. Intersection form and complex conjugation in the vanishing homology of real singularities in two variables.- 5. Classification of real and complex singularities of functions.- 6. Lyashko-Looijenga covering and its generalizations.- 7. Complements of discriminants of real simple singularities (after E. Looijenga).- 8. Stratifications. Semialgebraic, semianalytic and subanalytic sets.- 9. Pham's formulae.- 10. Monodromy of hyperplane sections.- 11. Stabilization of local monodromy and variation of hyperplane sections close to strata of positive dimension (stratified Picard-Lefschetz theory).- 12. Homology of local systems. Twisted Picard-Lefschetz formulae.- 13. Singularities of complete intersections and their local monodromy groups.- II. Newton's theorem on the nonintegrability of ovals.- 1. Stating the problems and the main results.- 2. Reduction of the integrability problem to the (generalized) PicardLefschetz theory.- 3. The element "cap".- 4. Ramification of integration cycles close to nonsingular points. Generating functions and generating families of smooth hypersurfaces.- 5. Obstructions to integrability arising from the cuspidal edges. Proof of Theorem 1.8.- 6. Obstructions to integrability arising from the asymptotic hyperplanes. Proof of Theorem 1.9.- 7. Several open problems.- III. Newton's potential of algebraic layers.- 1. Theorems of Newton and Ivory.- 2. Potentials of hyperbolic layers are polynomialin the hyperbolicity domains (after Arnold and Givental).- 3. Proofs of Main Theorems 1 and 2.- 4. Description of the small monodromy group.- 5. Proof of Main Theorem 3.- IV. Lacunas and the local Petrovski$$overset{lower0.5emhbox{$smash{scriptscriptstylesmile}$}}{I}$$ condition for hyperbolic differential operators with constant coefficients.- 0. Hyperbolic polynomials.- 1. Hyperbolic operators and hyperbolic polynomials. Sharpness, diffusion and lacunas.- 2. Generating functions and generating families of wave fronts for hyperbolic operators with constant coefficients. Classification of the singular points of wave fronts.- 3. Local lacunas close to nonsingular points of fronts and to singularities A2, A3 (after Davydova, Borovikov and Gárding).- 4. Petrovskii and Leray cycles. The Herglotz-Petrovskii-Leray formula and the Petrovskii condition for global lacunas.- 5. Local Petrovskii condition and local Petrovskii cycle. The local Petrovskii condition implies sharpness (after Atiyah, Bott and Gárding).- 6. Sharpness implies the local Petrovskii condition close to discrete-type points of wave fronts of strictly hyperbolic operators.- 7. The local Petrovskii condition may be stronger than the sharpness close to singular points not of discrete type.- 8. Normal forms of nonsharpness close to singularities of wave fronts (after A.N. Varchenko).- 9. Several problems.- V. Calculation of local Petrovski$$overset{lower0.5emhbox{$smash{scriptscriptstylesmile}$}}{I}$$ cycles and enumeration of local lacunas close to real function singularities.- 1. Main theorems.- 2. Local lacunas close to singularities from the classification tables.- 3. Calculation of the even local Petrovskii class.- 4. Calculation of theodd local Petrovskii class.- 5. Stabilization of the local Petrovskii classes. Proof of Theorem 1.5.- 6. Local lacunas close to simple singularities.- 7. Geometrical criterion for sharpness close to simple singularities.- 8. A program for counting topologically different morsifications of a real singularity.- 9. More detailed description of the algorithm.- Appendix: a FORTRAN program searching for the lacunas and enumerating the morsifications of real function singularities.