Random Motions in Markov and Semi-Markov Random Environments 1 (eBook, PDF)
Homogeneous Random Motions and their Applications
Alle Infos zum eBook verschenken
Random Motions in Markov and Semi-Markov Random Environments 1 (eBook, PDF)
Homogeneous Random Motions and their Applications
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is the first of two volumes on random motions in Markov and semi-Markov random environments. This first volume focuses on homogenous random motions. This volume consists of two parts, the first describing the basic concepts and methods that have been developed for random evolutions. These methods are the foundational tools used in both volumes, and this description includes many results in potential operators. Some techniques to find closed-form expressions in relevant applications are also presented. The second part deals with asymptotic results and presents a variety of…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 2.94MB
- Anatoliy PogoruiRandom Motions in Markov and Semi-Markov Random Environments 2 (eBook, PDF)139,99 €
- Anatoliy PogoruiRandom Motions in Markov and Semi-Markov Random Environments 1 (eBook, ePUB)139,99 €
- Anatoliy PogoruiRandom Motions in Markov and Semi-Markov Random Environments 2 (eBook, ePUB)139,99 €
- Narayanaswamy BalakrishnanIntroduction to Probability (eBook, PDF)112,99 €
- Amy S. WagamanProbability (eBook, PDF)125,99 €
- Robert P. DobrowIntroduction to Stochastic Processes with R (eBook, PDF)100,99 €
- Vadym M. RadchenkoGeneral Stochastic Measures (eBook, PDF)126,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 256
- Erscheinungstermin: 12. Januar 2021
- Englisch
- ISBN-13: 9781119808183
- Artikelnr.: 60938519
- Verlag: John Wiley & Sons
- Seitenzahl: 256
- Erscheinungstermin: 12. Januar 2021
- Englisch
- ISBN-13: 9781119808183
- Artikelnr.: 60938519
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Acknowledgments xiii
Introduction xv
Part 1. Basic Methods 1
Chapter 1. Preliminary Concepts 3
1.1. Introduction to random evolutions 3
1.2. Abstract potential operators 7
1.3. Markov processes: operator semigroups 11
1.4. Semi-Markov processes 14
1.5. Lumped Markov chains 17
1.6. Switched processes in Markov and semi-Markov media 19
Chapter 2. Homogeneous Random Evolutions (HRE) and their Applications 23
2.1. Homogeneous random evolutions (HRE) 24
2.1.1. Definition and classification of HRE 24
2.1.2. Some examples of HRE 25
2.1.3. Martingale characterization of HRE 28
2.1.4. Analogue of Dynkin's formula for HRE 34
2.1.5. Boundary value problems for HRE 36
2.2. Limit theorems for HRE 37
2.2.1. Weak convergence of HRE 37
2.2.2. Averaging of HRE 39
2.2.3. Diffusion approximation of HRE 42
2.2.4. Averaging of REs in reducible phase space: merged HRE 45
2.2.5. Diffusion approximation of HRE in reducible phase space 48
2.2.6. Normal deviations of HRE 51
2.2.7. Rates of convergence in the limit theorems for HRE 53
Part 2. Applications to Reliability, Random Motions, and Telegraph Processes 57
Chapter 3. Asymptotic Analysis for Distributions of Markov, Semi-Markov and Random Evolutions 59
3.1. Asymptotic distribution of time to reach a level that is infinitely increasing by a family of semi-Markov processes on the set N 61
3.2. Asymptotic inequalities for the distribution of the occupation time of a semi-Markov process in an increasing set of states 74
3.3. Asymptotic analysis of the occupation time distribution of an embedded semi-Markov process (with increasing states) in a diffusion process 77
3.4. Asymptotic analysis of a semigroup of operators of the singularly perturbed random evolution in semi-Markov media 82
3.5. Asymptotic expansion for distribution of random motion in Markov media under the Kac condition 90
3.5.1. The equation for the probability density of the particle position performing a random walk in R^n 90
3.5.2. Equation for the probability density of the particle position 91
3.5.3. Reduction of a singularly perturbed evolution equation to a regularly perturbed equation 93
3.6. Asymptotic estimation for application of the telegraph process as an alternative to the diffusion process in the Black-Scholes formula 96
3.6.1. Asymptotic expansion for the singularly perturbed random evolution in Markov media in case of disbalance 96
3.6.2. Application to an economic model of stock market 100
Chapter 4. Random Switched Processes with Delay in Reflecting Boundaries 103
4.1. Stationary distribution of evolutionary switched processes in a Markov environment with delay in reflecting boundaries 104
4.2. Stationary distribution of switched process in semi-Markov media with delay in reflecting barriers 109
4.2.1. Infinitesimal operator of random evolution with semi-Markov switching 110
4.2.2. Stationary distribution of random evolution in semi-Markov media with delaying boundaries in balance case 113
4.2.3. Stationary distribution of random evolution in semi-Markov media with delaying boundaries 121
4.3. Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer: the Markov case 124
4.3.1. Introduction 124
4.3.2. Stationary distribution of Markov stochastic evolutions 125
4.3.3. Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer 129
&
Acknowledgments xiii
Introduction xv
Part 1. Basic Methods 1
Chapter 1. Preliminary Concepts 3
1.1. Introduction to random evolutions 3
1.2. Abstract potential operators 7
1.3. Markov processes: operator semigroups 11
1.4. Semi-Markov processes 14
1.5. Lumped Markov chains 17
1.6. Switched processes in Markov and semi-Markov media 19
Chapter 2. Homogeneous Random Evolutions (HRE) and their Applications 23
2.1. Homogeneous random evolutions (HRE) 24
2.1.1. Definition and classification of HRE 24
2.1.2. Some examples of HRE 25
2.1.3. Martingale characterization of HRE 28
2.1.4. Analogue of Dynkin's formula for HRE 34
2.1.5. Boundary value problems for HRE 36
2.2. Limit theorems for HRE 37
2.2.1. Weak convergence of HRE 37
2.2.2. Averaging of HRE 39
2.2.3. Diffusion approximation of HRE 42
2.2.4. Averaging of REs in reducible phase space: merged HRE 45
2.2.5. Diffusion approximation of HRE in reducible phase space 48
2.2.6. Normal deviations of HRE 51
2.2.7. Rates of convergence in the limit theorems for HRE 53
Part 2. Applications to Reliability, Random Motions, and Telegraph Processes 57
Chapter 3. Asymptotic Analysis for Distributions of Markov, Semi-Markov and Random Evolutions 59
3.1. Asymptotic distribution of time to reach a level that is infinitely increasing by a family of semi-Markov processes on the set N 61
3.2. Asymptotic inequalities for the distribution of the occupation time of a semi-Markov process in an increasing set of states 74
3.3. Asymptotic analysis of the occupation time distribution of an embedded semi-Markov process (with increasing states) in a diffusion process 77
3.4. Asymptotic analysis of a semigroup of operators of the singularly perturbed random evolution in semi-Markov media 82
3.5. Asymptotic expansion for distribution of random motion in Markov media under the Kac condition 90
3.5.1. The equation for the probability density of the particle position performing a random walk in R^n 90
3.5.2. Equation for the probability density of the particle position 91
3.5.3. Reduction of a singularly perturbed evolution equation to a regularly perturbed equation 93
3.6. Asymptotic estimation for application of the telegraph process as an alternative to the diffusion process in the Black-Scholes formula 96
3.6.1. Asymptotic expansion for the singularly perturbed random evolution in Markov media in case of disbalance 96
3.6.2. Application to an economic model of stock market 100
Chapter 4. Random Switched Processes with Delay in Reflecting Boundaries 103
4.1. Stationary distribution of evolutionary switched processes in a Markov environment with delay in reflecting boundaries 104
4.2. Stationary distribution of switched process in semi-Markov media with delay in reflecting barriers 109
4.2.1. Infinitesimal operator of random evolution with semi-Markov switching 110
4.2.2. Stationary distribution of random evolution in semi-Markov media with delaying boundaries in balance case 113
4.2.3. Stationary distribution of random evolution in semi-Markov media with delaying boundaries 121
4.3. Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer: the Markov case 124
4.3.1. Introduction 124
4.3.2. Stationary distribution of Markov stochastic evolutions 125
4.3.3. Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer 129
&