Random Motions in Markov and Semi-Markov Random Environments 2 (eBook, ePUB)
High-dimensional Random Motions and Financial Applications
Alle Infos zum eBook verschenken
Random Motions in Markov and Semi-Markov Random Environments 2 (eBook, ePUB)
High-dimensional Random Motions and Financial Applications
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is the second of two volumes on random motions in Markov and semi-Markov random environments. This second volume focuses on high-dimensional random motions. This volume consists of two parts. The first expands many of the results found in Volume 1 to higher dimensions. It presents new results on the random motion of the realistic three-dimensional case, which has so far been barely mentioned in the literature, and deals with the interaction of particles in Markov and semi-Markov media, which has, in contrast, been a topic of intense study. The second part contains applications of…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 14.87MB
- Anatoliy PogoruiRandom Motions in Markov and Semi-Markov Random Environments 1 (eBook, ePUB)139,99 €
- Anatoliy PogoruiRandom Motions in Markov and Semi-Markov Random Environments 1 (eBook, PDF)139,99 €
- Anatoliy PogoruiRandom Motions in Markov and Semi-Markov Random Environments 2 (eBook, PDF)139,99 €
- Narayanaswamy BalakrishnanIntroduction to Probability (eBook, ePUB)112,99 €
- Amy S. WagamanProbability (eBook, ePUB)125,99 €
- Robert P. DobrowIntroduction to Stochastic Processes with R (eBook, ePUB)100,99 €
- Vadym M. RadchenkoGeneral Stochastic Measures (eBook, ePUB)126,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 224
- Erscheinungstermin: 11. Januar 2021
- Englisch
- ISBN-13: 9781119808176
- Artikelnr.: 60938533
- Verlag: John Wiley & Sons
- Seitenzahl: 224
- Erscheinungstermin: 11. Januar 2021
- Englisch
- ISBN-13: 9781119808176
- Artikelnr.: 60938533
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Acknowledgments xiii
Introduction xv
Part 1. Higher-dimensional Random Motions and Interactive Particles 1
Chapter 1. Random Motions in Higher Dimensions 3
1.1. Random motion at finite speed with semi-Markov switching directions process 5
1.1.1. Erlang-K-distributed direction alternations 7
1.1.2. Some properties of the random walk in a semi-Markov environment and its characteristic function 15
1.2. Random motion with uniformly distributed directions and random velocity 17
1.2.1. Renewal equation for the characteristic function of isotropic motion with random velocity in a semi-Markov media 17
1.2.2. One-dimensional case 20
1.2.3. Two-dimensional case 23
1.2.4. Three-dimensional case 23
1.2.5. Four-dimensional case 31
1.3. The distribution of random motion at non-constant velocity in semi-Markov media 32
1.3.1. Renewal equation for the characteristic function 34
1.3.2. Two-dimensional case 35
1.3.3. Three-dimensional case 37
1.3.4. Four-dimensional case 40
1.4. Goldstein-Kac telegraph equations and random flights in higher dimensions 43
1.4.1. Preliminaries about our modeling approach 45
1.4.2. Two-dimensional case 48
1.4.3. Three-dimensional case 51
1.4.4. Five-dimensional case 59
1.5. The jump telegraph process in R^n 62
1.5.1. The jump telegraph process in R³ 63
1.5.2. Conclusions and final remarks 64
Chapter 2. System of Interactive Particles with Markov and Semi-Markov Switching 67
2.1. Description of the Markov model 68
2.1.1. Distribution of the first meeting time of two telegraph processes 69
2.1.2. Estimate of the number of particle collisions 74
2.1.3. Free path times of a family of particles 76
2.1.4. Estimation of the number of particle collisions for systems with boundaries 78
2.1.5. Estimation of the number of particle collisions for systems without boundaries 83
2.2. Interaction of particles governed by generalized integrated telegraph processes: a semi-Markov case 87
2.2.1. Laplace transform of the distribution of the first collision of two particles 88
2.2.2. Semi-Markov case 91
2.2.3. Distribution of the first collision of two particles with finite expectation 95
Part 2. Financial Applications 99
Chapter 3. Asymptotic Estimation for Application of the Telegraph Process as an Alternative to the Diffusion Process in the Black-Scholes Formula 101
3.1. Asymptotic expansion for the singularly perturbed random evolution in Markov media in the case of disbalance 101
3.2. Application: Black-Scholes formula 106
Chapter 4. Variance, Volatility, Covariance and Correlation Swaps for Financial Markets with Markov-modulated Volatilities 111
4.1. Volatility derivatives 111
4.1.1. Types of volatilities 111
4.1.2. Models for volatilities 113
4.1.3. Variance and volatility swaps 115
4.1.4. Covariance and correlation swaps 116
4.1.5. A brief literature review 117
4.2. Martingale representation of a Markov process 118
4.3. Variance and volatility swaps for financial markets with Markov-modulated stochastic volatilities 122
4.3.1. Pricing variance swaps 124
4.3.2. Pricing volatility swaps 124
4.4. Covariance and correlation swaps for two risky assets for financial markets with Markov-modulated stochastic volatilities 128
4.4.1. Pricing covariance swaps 128
4.4.2. Pricing correlation swaps 130
4.4.3. Corre
Acknowledgments xiii
Introduction xv
Part 1. Higher-dimensional Random Motions and Interactive Particles 1
Chapter 1. Random Motions in Higher Dimensions 3
1.1. Random motion at finite speed with semi-Markov switching directions process 5
1.1.1. Erlang-K-distributed direction alternations 7
1.1.2. Some properties of the random walk in a semi-Markov environment and its characteristic function 15
1.2. Random motion with uniformly distributed directions and random velocity 17
1.2.1. Renewal equation for the characteristic function of isotropic motion with random velocity in a semi-Markov media 17
1.2.2. One-dimensional case 20
1.2.3. Two-dimensional case 23
1.2.4. Three-dimensional case 23
1.2.5. Four-dimensional case 31
1.3. The distribution of random motion at non-constant velocity in semi-Markov media 32
1.3.1. Renewal equation for the characteristic function 34
1.3.2. Two-dimensional case 35
1.3.3. Three-dimensional case 37
1.3.4. Four-dimensional case 40
1.4. Goldstein-Kac telegraph equations and random flights in higher dimensions 43
1.4.1. Preliminaries about our modeling approach 45
1.4.2. Two-dimensional case 48
1.4.3. Three-dimensional case 51
1.4.4. Five-dimensional case 59
1.5. The jump telegraph process in R^n 62
1.5.1. The jump telegraph process in R³ 63
1.5.2. Conclusions and final remarks 64
Chapter 2. System of Interactive Particles with Markov and Semi-Markov Switching 67
2.1. Description of the Markov model 68
2.1.1. Distribution of the first meeting time of two telegraph processes 69
2.1.2. Estimate of the number of particle collisions 74
2.1.3. Free path times of a family of particles 76
2.1.4. Estimation of the number of particle collisions for systems with boundaries 78
2.1.5. Estimation of the number of particle collisions for systems without boundaries 83
2.2. Interaction of particles governed by generalized integrated telegraph processes: a semi-Markov case 87
2.2.1. Laplace transform of the distribution of the first collision of two particles 88
2.2.2. Semi-Markov case 91
2.2.3. Distribution of the first collision of two particles with finite expectation 95
Part 2. Financial Applications 99
Chapter 3. Asymptotic Estimation for Application of the Telegraph Process as an Alternative to the Diffusion Process in the Black-Scholes Formula 101
3.1. Asymptotic expansion for the singularly perturbed random evolution in Markov media in the case of disbalance 101
3.2. Application: Black-Scholes formula 106
Chapter 4. Variance, Volatility, Covariance and Correlation Swaps for Financial Markets with Markov-modulated Volatilities 111
4.1. Volatility derivatives 111
4.1.1. Types of volatilities 111
4.1.2. Models for volatilities 113
4.1.3. Variance and volatility swaps 115
4.1.4. Covariance and correlation swaps 116
4.1.5. A brief literature review 117
4.2. Martingale representation of a Markov process 118
4.3. Variance and volatility swaps for financial markets with Markov-modulated stochastic volatilities 122
4.3.1. Pricing variance swaps 124
4.3.2. Pricing volatility swaps 124
4.4. Covariance and correlation swaps for two risky assets for financial markets with Markov-modulated stochastic volatilities 128
4.4.1. Pricing covariance swaps 128
4.4.2. Pricing correlation swaps 130
4.4.3. Corre