S. M. Ermakov, V. V. Nekrutkin, A. S. Sipin
Random Processes for Classical Equations of Mathematical Physics (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
S. M. Ermakov, V. V. Nekrutkin, A. S. Sipin
Random Processes for Classical Equations of Mathematical Physics (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 24.04MB
Andere Kunden interessierten sich auch für
- Siegmund BrandtData Analysis (eBook, PDF)46,95 €
- Siegmund BrandtData Analysis (eBook, PDF)40,95 €
- Polygons, Polyominoes and Polycubes (eBook, PDF)40,95 €
- W. SchweizerNumerical Quantum Dynamics (eBook, PDF)73,95 €
- Carlo CercignaniThe Boltzmann Equation and Its Applications (eBook, PDF)169,95 €
- Antonio RomanoClassical Mechanics with Mathematica® (eBook, PDF)46,95 €
- Nicholas P. LandsmanMathematical Topics Between Classical and Quantum Mechanics (eBook, PDF)161,95 €
-
-
-
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 282
- Erscheinungstermin: 11. November 2013
- Englisch
- ISBN-13: 9789400922433
- Artikelnr.: 44176699
- Verlag: Springer Netherlands
- Seitenzahl: 282
- Erscheinungstermin: 11. November 2013
- Englisch
- ISBN-13: 9789400922433
- Artikelnr.: 44176699
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Markov Processes and Integral Equations.- 1.1. Breaking-off Markov chains and linear integral equations.- 1.2. Markov processes with continuous time and linear evolutionary equations.- 1.3. Convergent Markov chains and some boundary values problems.- 1.4. Markov chains and nonlinear integral equations.- 2. First Boundary Value Problem for the Equation of the Elliptic Type.- 2.1. Statement of the problem and notation.- 2.2. Green formula and the mean value theorem.- 2.3. Construction of a random process and an algorithm for the solution of the problem.- 2.4. Methods for simulation of a Markov chain.- 2.5. Estimation of the variance of a random variable ???.- 3. Equations with Polynomial Nonlinearity.- 3.1. Preliminary examples and notation.- 3.2. Representation of solutions of integral equations with polynomial nonlinearity.- 3.3. Definition of probability measures and the simplest estimators.- 3.4. Probabilistic solution of nonlinear equations on measures.- 4. Probabilistic Solution of Some Kinetic Equations.- 4.1. Deterministic motion of particles.- 4.2. Computational aspects of the simulation of a collision process.- 4.3. Random trajectories of particles. The construction of the basic process.- 4.4. Collision processes.- 4.5. Auxiliary results.- 4.6. Lemmas on certain integral equations.- 4.7. Uniqueness of the solution of the (X, T?, H) equation.- 4.8. Probabilistic solution of the interior boundary value problem for the regularized Boltzmann equation.- 4.9. Estimation of the computational labour requirements.- 5. Various Boundary Value Problems Related to the Laplace Operator.- 5.1. Parabolic means and a solution of the mixed problem for the heat equation.- 5.2. Exterior Dirichlet problem for the Laplace equation.- 5.3. Solution of the Neumann problem.- 5.4.Branching random walks on spheres and the Dirichlet problem for the equation ?u = u2.- 5.5. Special method for the solution of the Dirichlet problem for the Helmholtz equation.- 5.6. Probabilistic solution of the wave equation in the case of an infinitely differentiable solution.- 5.7. Another approach to the solution of hyperbolic equations.- 5.8. Probabilistic representation of the solution of boundary value problems for an inhomogeneous telegraph equation.- 5.9. Cauchy problem for the Schrödinger equation.- 6. Generalized Principal Value Integrals and Related Random Processes.- 6.1. Random processes related to linear equations.- 6.2. Nonlinear equations.- 6.3. On the representation of a solution of nonlinear equations as a generalized principal value integral.- 6.4. Principal part of the operator and the Monte Carlo method.- 7. Interacting Diffusion Processes and Nonlinear Parabolic Equations.- 7.1. Propagation of chaos and the law of large numbers.- 7.2. Interacting Markov processes and nonlinear equations. Heuristic considerations.- 7.3. Weakly interacting diffusions.- 7.4. Moderately interacting diffusions.- 7.5. On one method of numerical solution of systems of stochastic differential equations.- Bibliographical Notes.- References.- Additional References.
1. Markov Processes and Integral Equations.- 1.1. Breaking-off Markov chains and linear integral equations.- 1.2. Markov processes with continuous time and linear evolutionary equations.- 1.3. Convergent Markov chains and some boundary values problems.- 1.4. Markov chains and nonlinear integral equations.- 2. First Boundary Value Problem for the Equation of the Elliptic Type.- 2.1. Statement of the problem and notation.- 2.2. Green formula and the mean value theorem.- 2.3. Construction of a random process and an algorithm for the solution of the problem.- 2.4. Methods for simulation of a Markov chain.- 2.5. Estimation of the variance of a random variable ???.- 3. Equations with Polynomial Nonlinearity.- 3.1. Preliminary examples and notation.- 3.2. Representation of solutions of integral equations with polynomial nonlinearity.- 3.3. Definition of probability measures and the simplest estimators.- 3.4. Probabilistic solution of nonlinear equations on measures.- 4. Probabilistic Solution of Some Kinetic Equations.- 4.1. Deterministic motion of particles.- 4.2. Computational aspects of the simulation of a collision process.- 4.3. Random trajectories of particles. The construction of the basic process.- 4.4. Collision processes.- 4.5. Auxiliary results.- 4.6. Lemmas on certain integral equations.- 4.7. Uniqueness of the solution of the (X, T?, H) equation.- 4.8. Probabilistic solution of the interior boundary value problem for the regularized Boltzmann equation.- 4.9. Estimation of the computational labour requirements.- 5. Various Boundary Value Problems Related to the Laplace Operator.- 5.1. Parabolic means and a solution of the mixed problem for the heat equation.- 5.2. Exterior Dirichlet problem for the Laplace equation.- 5.3. Solution of the Neumann problem.- 5.4.Branching random walks on spheres and the Dirichlet problem for the equation ?u = u2.- 5.5. Special method for the solution of the Dirichlet problem for the Helmholtz equation.- 5.6. Probabilistic solution of the wave equation in the case of an infinitely differentiable solution.- 5.7. Another approach to the solution of hyperbolic equations.- 5.8. Probabilistic representation of the solution of boundary value problems for an inhomogeneous telegraph equation.- 5.9. Cauchy problem for the Schrödinger equation.- 6. Generalized Principal Value Integrals and Related Random Processes.- 6.1. Random processes related to linear equations.- 6.2. Nonlinear equations.- 6.3. On the representation of a solution of nonlinear equations as a generalized principal value integral.- 6.4. Principal part of the operator and the Monte Carlo method.- 7. Interacting Diffusion Processes and Nonlinear Parabolic Equations.- 7.1. Propagation of chaos and the law of large numbers.- 7.2. Interacting Markov processes and nonlinear equations. Heuristic considerations.- 7.3. Weakly interacting diffusions.- 7.4. Moderately interacting diffusions.- 7.5. On one method of numerical solution of systems of stochastic differential equations.- Bibliographical Notes.- References.- Additional References.