The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book's accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The two main changes for this edition are a new section on elliptic curve cryptography and an explanation of how elliptic curves played a role in the proof of Fermat's Last Theorem. ... the best place to start learning about elliptic curves." (Fernando Q. Gouvêa, MAA Reviews, maa.org, April, 2016)
"The book is an excellent introduction to elliptic curves over the rational numbers and ideal textbook for an undergraduate course. ... This book is highly recommended to students and researches interested in elliptic curves and their applications. It provides a natural step to a more advanced treatment of the subject." (Andrej Dujella, zbMATH 1346.11001, 2016)
"The book is an excellent introduction to elliptic curves over the rational numbers and ideal textbook for an undergraduate course. ... This book is highly recommended to students and researches interested in elliptic curves and their applications. It provides a natural step to a more advanced treatment of the subject." (Andrej Dujella, zbMATH 1346.11001, 2016)