Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors--noted experts on the topic--provide a text that can aid in the design and development of hybrid metaheuristics to…mehr
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors--noted experts on the topic--provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: * Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts * Offers an in-depth analysis of a range of optimization algorithms * Highlights a review of data clustering * Contains a detailed overview of different standard metaheuristics in current use * Presents a step-by-step guide to the build-up of hybrid metaheuristics * Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Sourav De, PhD, is an Associate Professor of Computer Science and Engineering at Cooch Behar Government Engineering College, West Bengal, India. Sandip Dey, PhD, is an Assistant Professor of Computer Science at Sukanta Mahavidyalaya, Dhupguri, Jalpaiguri, India. Siddhartha Bhattacharyya, PhD, is a Professor of Computer Science and Engineering at CHRIST (Deemed to be University), Bangalore, India.
Inhaltsangabe
List of Contributors xiii
Series Preface xv
Preface xvii
1 Metaheuristic Algorithms in Fuzzy Clustering 1 Sourav De, Sandip Dey, and Siddhartha Bhattacharyya
1.1 Introduction 1
1.2 Fuzzy Clustering 1
1.2.1 Fuzzy c-means (FCM) clustering 2
1.3 Algorithm 2
1.3.1 Selection of Cluster Centers 3
1.4 Genetic Algorithm 3
1.5 Particle Swarm Optimization 5
1.6 Ant Colony Optimization 6
1.7 Artificial Bee Colony Algorithm 7
1.8 Local Search-Based Metaheuristic Clustering Algorithms 7
2 Hybrid Harmony Search Algorithm to Solve the Feature Selection for Data Mining Applications 19 Laith Mohammad Abualigah, Mofleh Al-diabat, Mohammad Al Shinwan, Khaldoon Dhou, Bisan Alsalibi, Essam Said Hanandeh, and Mohammad Shehab
2.1 Introduction 19
2.2 Research Framework 21
2.3 Text Preprocessing 22
2.3.1 Tokenization 22
2.3.2 StopWords Removal 22
2.3.3 Stemming 23
2.3.4 Text Document Representation 23
2.3.5 TermWeight (TF-IDF) 23
2.4 Text Feature Selection 24
2.4.1 Mathematical Model of the Feature Selection Problem 24
2.4.2 Solution Representation 24
2.4.3 Fitness Function 24
2.5 Harmony Search Algorithm 25
2.5.1 Parameters Initialization 25
2.5.2 Harmony Memory Initialization 26
2.5.3 Generating a New Solution 26
2.5.4 Update Harmony Memory 27
2.5.5 Check the Stopping Criterion 27
2.6 Text Clustering 27
2.6.1 Mathematical Model of the Text Clustering 27
2.6.2 Find Clusters Centroid 27
2.6.3 Similarity Measure 28
2.7 k-means text clustering algorithm 28
2.8 Experimental Results 29
2.8.1 Evaluation Measures 29
2.8.1.1 F-measure Based on Clustering Evaluation 30
2.8.1.2 Accuracy Based on Clustering Evaluation 31
2.8.2 Results and Discussions 31
2.9 Conclusion 34
References 34
3 Adaptive Position-Based Crossover in the Genetic Algorithm for Data Clustering 39 Arnab Gain and Prasenjit Dey
3.1 Introduction 39
3.2 Preliminaries 40
3.2.1 Clustering 40
3.2.1.1 k-means Clustering 40
3.2.2 Genetic Algorithm 41
3.3 RelatedWorks 42
3.3.1 GA-Based Data Clustering by Binary Encoding 42
3.3.2 GA-Based Data Clustering by Real Encoding 43
3.3.3 GA-Based Data Clustering for Imbalanced Datasets 44
3.4 Proposed Model 44
3.5 Experimentation 46
3.5.1 Experimental Settings 46
3.5.2 DB Index 47
3.5.3 Experimental Results 49
3.6 Conclusion 51
References 57
4 Application of Machine Learning in the Social Network 61 Belfin R. V., E. Grace Mary Kanaga, and Suman Kundu
4.1 Introduction 61
4.1.1 Social Media 61
4.1.2 Big Data 62
4.1.3 Machine Learning 62
4.1.4 Natural Language Processing (NLP) 63
4.1.5 Social Network Analysis 64
4.2 Application of Classification Models in Social Networks 64
2 Hybrid Harmony Search Algorithm to Solve the Feature Selection for Data Mining Applications 19 Laith Mohammad Abualigah, Mofleh Al-diabat, Mohammad Al Shinwan, Khaldoon Dhou, Bisan Alsalibi, Essam Said Hanandeh, and Mohammad Shehab
2.1 Introduction 19
2.2 Research Framework 21
2.3 Text Preprocessing 22
2.3.1 Tokenization 22
2.3.2 StopWords Removal 22
2.3.3 Stemming 23
2.3.4 Text Document Representation 23
2.3.5 TermWeight (TF-IDF) 23
2.4 Text Feature Selection 24
2.4.1 Mathematical Model of the Feature Selection Problem 24
2.4.2 Solution Representation 24
2.4.3 Fitness Function 24
2.5 Harmony Search Algorithm 25
2.5.1 Parameters Initialization 25
2.5.2 Harmony Memory Initialization 26
2.5.3 Generating a New Solution 26
2.5.4 Update Harmony Memory 27
2.5.5 Check the Stopping Criterion 27
2.6 Text Clustering 27
2.6.1 Mathematical Model of the Text Clustering 27
2.6.2 Find Clusters Centroid 27
2.6.3 Similarity Measure 28
2.7 k-means text clustering algorithm 28
2.8 Experimental Results 29
2.8.1 Evaluation Measures 29
2.8.1.1 F-measure Based on Clustering Evaluation 30
2.8.1.2 Accuracy Based on Clustering Evaluation 31
2.8.2 Results and Discussions 31
2.9 Conclusion 34
References 34
3 Adaptive Position-Based Crossover in the Genetic Algorithm for Data Clustering 39 Arnab Gain and Prasenjit Dey
3.1 Introduction 39
3.2 Preliminaries 40
3.2.1 Clustering 40
3.2.1.1 k-means Clustering 40
3.2.2 Genetic Algorithm 41
3.3 RelatedWorks 42
3.3.1 GA-Based Data Clustering by Binary Encoding 42
3.3.2 GA-Based Data Clustering by Real Encoding 43
3.3.3 GA-Based Data Clustering for Imbalanced Datasets 44
3.4 Proposed Model 44
3.5 Experimentation 46
3.5.1 Experimental Settings 46
3.5.2 DB Index 47
3.5.3 Experimental Results 49
3.6 Conclusion 51
References 57
4 Application of Machine Learning in the Social Network 61 Belfin R. V., E. Grace Mary Kanaga, and Suman Kundu
4.1 Introduction 61
4.1.1 Social Media 61
4.1.2 Big Data 62
4.1.3 Machine Learning 62
4.1.4 Natural Language Processing (NLP) 63
4.1.5 Social Network Analysis 64
4.2 Application of Classification Models in Social Networks 64
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826