114,99 €
114,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
114,99 €
114,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
114,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
114,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors--noted experts on the topic--provide a text that can aid in the design and development of hybrid metaheuristics to…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 27.99MB
Produktbeschreibung
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors--noted experts on the topic--provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: * Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts * Offers an in-depth analysis of a range of optimization algorithms * Highlights a review of data clustering * Contains a detailed overview of different standard metaheuristics in current use * Presents a step-by-step guide to the build-up of hybrid metaheuristics * Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Sourav De, PhD, is an Associate Professor of Computer Science and Engineering at Cooch Behar Government Engineering College, West Bengal, India. Sandip Dey, PhD, is an Assistant Professor of Computer Science at Sukanta Mahavidyalaya, Dhupguri, Jalpaiguri, India. Siddhartha Bhattacharyya, PhD, is a Professor of Computer Science and Engineering at CHRIST (Deemed to be University), Bangalore, India.