Recommender Systems (eBook, PDF)
Algorithms and Applications
Redaktion: Pavan Kumar, P.; Nandan Mohanty, Sachi; Potluri, Sirisha; Vairachilai, S.
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
47,95 €
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Recommender Systems (eBook, PDF)
Algorithms and Applications
Redaktion: Pavan Kumar, P.; Nandan Mohanty, Sachi; Potluri, Sirisha; Vairachilai, S.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how theory is applied and implemented in actual systems.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 17.61MB
Andere Kunden interessierten sich auch für
- Recommender Systems (eBook, ePUB)47,95 €
- Daniel D. PriorCustomer Relationship Management (eBook, PDF)65,95 €
- Fabrizio MoscaDigital Channels and Social Media Management in Luxury Markets (eBook, PDF)48,95 €
- The GDPR Challenge (eBook, PDF)81,95 €
- Mohammad RostamiTransfer Learning through Embedding Spaces (eBook, PDF)47,95 €
- Computing Handbook (eBook, PDF)214,95 €
- Slawomir GrysComputer Arithmetic in Practice (eBook, PDF)31,95 €
-
-
-
Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how theory is applied and implemented in actual systems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 248
- Erscheinungstermin: 3. Juni 2021
- Englisch
- ISBN-13: 9781000387278
- Artikelnr.: 61429773
- Verlag: Taylor & Francis
- Seitenzahl: 248
- Erscheinungstermin: 3. Juni 2021
- Englisch
- ISBN-13: 9781000387278
- Artikelnr.: 61429773
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. P. Pavan Kumar received a Ph.D. degree from JNTU, Anantapur, India. He is an Assistant Professor in the Department of Computer Science and Engineering at ICFAI Foundation for Higher Education (IFHE), Hyderabad. His research interests include real-time systems, multi-core systems, high-performance systems, computer vision. Dr. S. Vairachilai earned a Ph.D. degree in Information Technology from Anna University, India. She is an Assistant Professor in the Department of CSE at ICFAI Foundation for Higher Education (IFHE), Hyderabad, Telangana. Prior to this she served in teaching roles an Kalasalingam University and N.P.R College of Engineering and Technology, Tamilnadu, India. Her research interests include Machine Learning, Recommender System and Social Network Analysis. Sirisha Potluri is an Assistant Professor in the Department of Computer Science & Engineering at ICFAI Foundation for Higher Education, Hyderabad. She is pursuing a Ph.D. degree in the area of cloud computing. Her research areas include distributed computing, cloud computing, fog computing, recommender systems and IoT. Dr. Sachi Nandan Mohanty received a Ph.D. degree from IIT Kharagpur, India. He is an Associate Professor in the Department of Computer Science & Engineering at ICFAI Foundation for Higher Education Hyderabad. Prof. Mohanty's research areas include data mining, big data analysis, cognitive science, fuzzy decision making, brain-computer interface, and computational intelligence.
Preface. Acknowledgements. Editors. List of Contributors. Chapter 1
Collaborative Filtering-based Robust Recommender System using Machine
Learning Algorithms. Chapter 2 An Experimental Analysis of Community
Detection Algorithms on a Temporally Evolving Dataset. Chapter 3 Why This
Recommendation: Explainable Product Recommendations with Ontological
Knowledge Reasoning. Chapter 4 Model-based Filtering Systems using a
Latent-factor Technique. Chapter 5 Recommender Systems for the Social
Networking Context for Collaborative Filtering and Content-Based Approaches
. Chapter 6 Recommendation System for Risk Assessment in Requirements
Engineering of Software with Tropos Goal-Risk Model. Chapter 7 A
Comprehensive Overview to the Recommender System: Approaches, Algorithms
and Challenges. Chapter 8 Collaborative Filtering Techniques: Algorithms
and Advances. Index.
Collaborative Filtering-based Robust Recommender System using Machine
Learning Algorithms. Chapter 2 An Experimental Analysis of Community
Detection Algorithms on a Temporally Evolving Dataset. Chapter 3 Why This
Recommendation: Explainable Product Recommendations with Ontological
Knowledge Reasoning. Chapter 4 Model-based Filtering Systems using a
Latent-factor Technique. Chapter 5 Recommender Systems for the Social
Networking Context for Collaborative Filtering and Content-Based Approaches
. Chapter 6 Recommendation System for Risk Assessment in Requirements
Engineering of Software with Tropos Goal-Risk Model. Chapter 7 A
Comprehensive Overview to the Recommender System: Approaches, Algorithms
and Challenges. Chapter 8 Collaborative Filtering Techniques: Algorithms
and Advances. Index.
Preface. Acknowledgements. Editors. List of Contributors. Chapter 1
Collaborative Filtering-based Robust Recommender System using Machine
Learning Algorithms. Chapter 2 An Experimental Analysis of Community
Detection Algorithms on a Temporally Evolving Dataset. Chapter 3 Why This
Recommendation: Explainable Product Recommendations with Ontological
Knowledge Reasoning. Chapter 4 Model-based Filtering Systems using a
Latent-factor Technique. Chapter 5 Recommender Systems for the Social
Networking Context for Collaborative Filtering and Content-Based Approaches
. Chapter 6 Recommendation System for Risk Assessment in Requirements
Engineering of Software with Tropos Goal-Risk Model. Chapter 7 A
Comprehensive Overview to the Recommender System: Approaches, Algorithms
and Challenges. Chapter 8 Collaborative Filtering Techniques: Algorithms
and Advances. Index.
Collaborative Filtering-based Robust Recommender System using Machine
Learning Algorithms. Chapter 2 An Experimental Analysis of Community
Detection Algorithms on a Temporally Evolving Dataset. Chapter 3 Why This
Recommendation: Explainable Product Recommendations with Ontological
Knowledge Reasoning. Chapter 4 Model-based Filtering Systems using a
Latent-factor Technique. Chapter 5 Recommender Systems for the Social
Networking Context for Collaborative Filtering and Content-Based Approaches
. Chapter 6 Recommendation System for Risk Assessment in Requirements
Engineering of Software with Tropos Goal-Risk Model. Chapter 7 A
Comprehensive Overview to the Recommender System: Approaches, Algorithms
and Challenges. Chapter 8 Collaborative Filtering Techniques: Algorithms
and Advances. Index.